Anabel E Lanterna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5622700/publications.pdf

Version: 2024-02-01

471371 434063 1,080 50 17 31 citations h-index g-index papers 51 51 51 1800 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photocatalytic Hydrogen Generation Using Metal-Decorated TiO ₂ : Sacrificial Donors vs True Water Splitting. ACS Energy Letters, 2018, 3, 542-545.	8.8	113
2	Improving the Sunscreen Properties of TiO $<$ sub $>$ 2 $<$ /sub $>$ through an Understanding of Its Catalytic Properties. ACS Omega, 2016, 1, 464-469.	1.6	94
3	Heterogeneous Photocatalytic Click Chemistry. Journal of the American Chemical Society, 2016, 138, 13127-13130.	6.6	82
4	Selective Photoinduced Antibacterial Activity of Amoxicillin-Coated Gold Nanoparticles: From One-Step Synthesis to in Vivo Cytocompatibility. ACS Omega, 2018, 3, 1220-1230.	1.6	55
5	Catalyst Decomposition during Olefin Metathesis Yields Isomerizationâ€Active Ruthenium Nanoparticles. ChemCatChem, 2016, 8, 2446-2449.	1.8	54
6	Light-Induced Sonogashira C–C Coupling under Mild Conditions Using Supported Palladium Nanoparticles. ACS Sustainable Chemistry and Engineering, 2018, 6, 1717-1722.	3.2	50
7	Biocompatibility and photo-induced antibacterial activity of lignin-stabilized noble metal nanoparticles. RSC Advances, 2018, 8, 40454-40463.	1.7	46
8	A Mechanistic Study of Halogen Addition and Photoelimination from π-Conjugated Tellurophenes. Journal of the American Chemical Society, 2016, 138, 2678-2689.	6.6	38
9	Tunable Photocatalytic Activity of Palladium-Decorated TiO ₂ : Non-Hydrogen-Mediated Hydrogenation or Isomerization of Benzyl-Substituted Alkenes. ACS Catalysis, 2017, 7, 250-255.	5 . 5	38
10	When Nanoparticle Size and Molecular Geometry Matter: Analyzing the Degree of Surface Functionalization of Gold Nanoparticles with Sulfur Heterocyclic Compounds. Journal of Physical Chemistry C, 2012, 116, 6520-6529.	1.5	35
11	Distinctive Interactions of Oleic Acid Covered Magnetic Nanoparticles with Saturated and Unsaturated Phospholipids in Langmuir Monolayers. Langmuir, 2014, 30, 5888-5896.	1.6	34
12	Expanding the Color Space in the Two-Color Heterogeneous Photocatalysis of Ullmann C–C Coupling Reactions. ACS Catalysis, 2018, 8, 7593-7597.	5 . 5	33
13	Heterogeneous photocatalytic C–C coupling: mechanism of plasmon-mediated reductive dimerization of benzyl bromides by supported gold nanoparticles. Catalysis Science and Technology, 2015, 5, 4336-4340.	2.1	30
14	Glass wool: a novel support for heterogeneous catalysis. Chemical Science, 2018, 9, 6844-6852.	3.7	30
15	Glass wool supported ruthenium complexes: versatile, recyclable heterogeneous photoredox catalysts. Catalysis Science and Technology, 2020, 10, 1273-1280.	2.1	26
16	Highly Electrophilic Titania Hole as a Versatile and Efficient Photochemical Free Radical Source. Journal of the American Chemical Society, 2019, 141, 4531-4535.	6.6	22
17	Enhanced catalytic electrochemical reduction of dissolved oxygen with ultraclean cucurbituril[7]-capped gold nanoparticles. Nanoscale, 2014, 6, 9550-9553.	2.8	21
18	Catalytic farming: reaction rotation extends catalyst performance. Chemical Science, 2019, 10, 1419-1425.	3.7	18

#	Article	IF	Citations
19	Hydrophobic silver nanoparticles interacting with phospholipids and stratum corneum mimic membranes in Langmuir monolayers. Journal of Colloid and Interface Science, 2019, 543, 247-255.	5.0	16
20	Twoâ€Photon Excitation of a Plasmonic Nanoswitch Monitored by Singleâ€Molecule Fluorescence Microscopy. Chemistry - A European Journal, 2016, 22, 7281-7287.	1.7	15
21	Photophysics of 7-mercapto-4-methylcoumarin and derivatives: complementary fluorescence behaviour to 7-hydroxycoumarins. Photochemical and Photobiological Sciences, 2017, 16, 1284-1289.	1.6	15
22	Photochemical Dehalogenation of Aryl Halides: Importance of Halogen Bonding. Journal of Physical Chemistry A, 2019, 123, 10224-10229.	1.1	14
23	Is Single-Molecule Fluorescence Spectroscopy Ready To Join the Organic Chemistry Toolkit? A Test Case Involving Click Chemistry. Journal of Organic Chemistry, 2017, 82, 5011-5019.	1.7	13
24	From the molecule to the mole: improving heterogeneous copper catalyzed click chemistry using single molecule spectroscopy. Chemical Communications, 2017, 53, 328-331.	2.2	13
25	Thiol-Stabilized Gold Nanoparticles: New Ways To Displace Thiol Layers Using Yttrium or Lanthanide Chlorides. Langmuir, 2017, 33, 12149-12154.	1.6	13
26	Visible Light Production of Hydrogen by Ablated Graphene: Water Splitting or Carbon Gasification?. Journal of the American Chemical Society, 2017, 139, 11024-11027.	6.6	12
27	Click Chemistry: Mechanistic Insights into the Role of Amines Using Single-Molecule Spectroscopy. ACS Catalysis, 2017, 7, 8487-8492.	5.5	12
28	How Fast Can Thiols Bind to the Gold Nanoparticle Surface?. Photochemistry and Photobiology, 2018, 94, 1109-1115.	1.3	11
29	Cobalt-molybdenum co-catalyst for heterogeneous photocatalytic H-mediated transformations. Journal of Catalysis, 2019, 379, 33-38.	3.1	10
30	Peryleneâ€Grafted Silicas: Mechanistic Study and Applications in Heterogeneous Photoredox Catalysis. Chemistry - A European Journal, 2019, 25, 14928-14934.	1.7	10
31	Heterogeneous photocatalysis of azides: extending nitrene photochemistry to longer wavelengths. Chemical Communications, 2020, 56, 10239-10242.	2.2	10
32	Nitro to amine reductions using aqueous flow catalysis under ambient conditions. IScience, 2021, 24, 103472.	1.9	10
33	Evaluation of different Ni–semiconductor composites as electrodes for enhanced hydrogen evolution reaction. Sustainable Energy and Fuels, 2020, 4, 3963-3970.	2.5	8
34	Solar Driven Photocatalytic Activity of Porphyrin Sensitized TiO2: Experimental and Computational Studies. Molecules, 2021, 26, 3131.	1.7	8
35	Photoinduced Hydrogen Fuel Production and Water Decontamination Technologies. Orthogonal Strategies with a Parallel Future?. ACS Energy Letters, 2017, 2, 1909-1910.	8.8	7
36	Spectroscopic and Time-Dependent DFT Study of the Photophysical Properties of Substituted 1,4-Distyrylbenzenes. Journal of Physical Chemistry A, 2019, 123, 6496-6505.	1.1	7

3

#	Article	IF	CITATIONS
37	Decorated titania fibers as photocatalysts for hydrogen generation and organic matter degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112185.	2.0	7
38	Mechanistic Insights on the Semihydrogenation of Alkynes over Different Nanostructured Photocatalysts. ACS Catalysis, 2021, 11, 4230-4238.	5.5	7
39	A general method to produce mesoporous oxide spherical particles through an aerosol method from aqueous solutions. Journal of Sol-Gel Science and Technology, 2020, 94, 195-204.	1.1	6
40	Photochemical benzylic radical arylation promoted by supported Pd nanostructures. Organic and Biomolecular Chemistry, 2020, 18, 6047-6052.	1.5	6
41	Niobium-based semiconductor electrodes for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 31940-31948.	3.8	5
42	Decoration of glass wool with zinc (II) phthalocyanine for the photocatalytic transformation of methyl orange. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 432, 114127.	2.0	5
43	A green road map for heterogeneous photocatalysis. Pure and Applied Chemistry, 2020, 92, 63-73.	0.9	4
44	Photosensitized selective semi-oxidation of tetrahydroisoquinoline: a singlet oxygen path. Photochemical and Photobiological Sciences, 2022, , .	1.6	4
45	Synthesis of gold nanoparticles using electron-donating dithiafulvene units. Tetrahedron Letters, 2015, 56, 4871-4876.	0.7	3
46	Catalyst Decomposition during Olefin Metathesis Yields Isomerization-Active Ruthenium Nanoparticles. ChemCatChem, 2016, 8, 2424-2424.	1.8	3
47	Scale-up of a photochemical flow reactor for the production of lignin-coated titanium dioxide as a sunscreen ingredient. Journal of Photochemistry and Photobiology, 2021, 7, 100040.	1.1	3
48	Ni composite electrodes for hydrogen generation: Activation of Nb-based semiconductors. International Journal of Hydrogen Energy, 2022, , .	3.8	2
49	Thiosaccharine disulfide: Synthesis, crystal structure, spectroscopic characterization and theoretical study. Journal of Molecular Structure, 2013, 1032, 48-55.	1.8	1
50	Remarkable effect of the dithiafulvene structures on their capacity as reducing agents: Influence of conjugated thiocarbonyl group. Applied Surface Science, 2019, 465, 1061-1065.	3.1	1