
Carol A Hartley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/562264/publications.pdf Version: 2024-02-01

CAPOL A HADTLEY

#	Article	IF	CITATIONS
1	Attenuated Vaccines Can Recombine to Form Virulent Field Viruses. Science, 2012, 337, 188-188.	6.0	154
2	Surfactant Protein A Binds to the Fusion Glycoprotein of Respiratory Syncytial Virus and Neutralizes Virion Infectivity. Journal of Infectious Diseases, 1999, 180, 2009-2013.	1.9	108
3	Spread of the newly emerging infectious laryngotracheitis viruses in Australia. Infection, Genetics and Evolution, 2016, 43, 67-73.	1.0	49
4	The major membrane nuclease MnuA degrades neutrophil extracellular traps induced by Mycoplasma bovis. Veterinary Microbiology, 2018, 218, 13-19.	0.8	49
5	Evaluation of immunological responses to a glycoprotein G deficient candidate vaccine strain of infectious laryngotracheitis virus. Vaccine, 2010, 28, 1325-1332.	1.7	45
6	Immune responses to infectious laryngotracheitis virus. Developmental and Comparative Immunology, 2013, 41, 454-462.	1.0	45
7	Natural recombination in alphaherpesviruses: Insights into viral evolution through full genome sequencing and sequence analysis. Infection, Genetics and Evolution, 2017, 49, 174-185.	1.0	45
8	First complete genome sequence of infectious laryngotracheitis virus. BMC Genomics, 2011, 12, 197.	1.2	42
9	Glycoprotein G deficient infectious laryngotracheitis virus is a candidate attenuated vaccine. Vaccine, 2007, 25, 3561-3566.	1.7	35
10	Comparison of antibody detection assays for the diagnosis of equine herpesvirus 1 and 4 infections in horses. American Journal of Veterinary Research, 2005, 66, 921-928.	0.3	31
11	Equine gammaherpesviruses: Perfect parasites?. Veterinary Microbiology, 2013, 167, 86-92.	0.8	31
12	Update on Viral Diseases of the Equine Respiratory Tract. Veterinary Clinics of North America Equine Practice, 2015, 31, 91-104.	0.3	31
13	Evidence that Equine Rhinitis A Virus VP1 Is a Target of Neutralizing Antibodies and Participates Directly in Receptor Binding. Journal of Virology, 2001, 75, 9274-9281.	1.5	30
14	Comparative analysis of the complete genome sequences of two Australian origin live attenuated vaccines of infectious laryngotracheitis virus. Vaccine, 2011, 29, 9583-9587.	1.7	30
15	Phylogenetic and Molecular Epidemiological Studies Reveal Evidence of Multiple Past Recombination Events between Infectious Laryngotracheitis Viruses. PLoS ONE, 2013, 8, e55121.	1.1	30
16	Equine rhinitis B virus: a new serotype. Journal of General Virology, 2001, 82, 2641-2645.	1.3	30
17	Comparative <i>in vivo</i> safety and efficacy of a glycoprotein G-deficient candidate vaccine strain of infectious laryngotracheitis virus delivered via eye drop. Avian Pathology, 2011, 40, 411-417.	0.8	26
18	Full genome analysis of Australian infectious bronchitis viruses suggests frequent recombination events between vaccine strains and multiple phylogenetically distant avian coronaviruses of unknown origin. Veterinary Microbiology, 2016, 197, 27-38.	0.8	25

CAROL A HARTLEY

#	Article	IF	CITATIONS
19	Equine rhinitis A virus: structural proteins and immune response. Journal of General Virology, 2001, 82, 1725-1728.	1.3	25
20	Sequence variation divides Equine rhinitis B virus into three distinct phylogenetic groups that correlate with serotype and acid stability. Journal of General Virology, 2005, 86, 2323-2332.	1.3	24
21	Mapping B lymphocytes as major reservoirs of naturally occurring latent equine herpesvirus 5 infection. Journal of General Virology, 2017, 98, 461-470.	1.3	24
22	Growth Kinetics and Transmission Potential of Existing and Emerging Field Strains of Infectious Laryngotracheitis Virus. PLoS ONE, 2015, 10, e0120282.	1.1	24
23	Horizontal transmission dynamics of a glycoprotein G deficient candidate vaccine strain of infectious laryngotracheitis virus and the effect of vaccination on transmission of virulent virus. Vaccine, 2011, 29, 5699-5704.	1.7	22
24	Sialic acid acts as a receptor for equine rhinitis A virus binding and infection. Journal of General Virology, 2004, 85, 2535-2543.	1.3	21
25	Equine picornaviruses: Well known but poorly understood. Veterinary Microbiology, 2013, 167, 78-85.	0.8	20
26	Low genetic diversity among historical and contemporary clinical isolates of felid herpesvirus 1. BMC Genomics, 2016, 17, 704.	1.2	20
27	Sequence Conservation and Antigenic Variation of the Structural Proteins of Equine Rhinitis A Virus. Journal of Virology, 2001, 75, 10550-10556.	1.5	18
28	Persistence and chronic urinary shedding of the aphthovirus equine rhinitis A virus. Comparative Immunology, Microbiology and Infectious Diseases, 2013, 36, 95-103.	0.7	18
29	Equine Transport and Changes in Equid Herpesvirus' Status. Frontiers in Veterinary Science, 2018, 5, 224.	0.9	17
30	Comparing the genetic diversity of ORF30 of Australian isolates of 3 equid alphaherpesviruses. Veterinary Microbiology, 2014, 169, 50-57.	0.8	16
31	Genetic Diversity of Infectious Laryngotracheitis Virus during In Vivo Coinfection Parallels Viral Replication and Arises from Recombination Hot Spots within the Genome. Applied and Environmental Microbiology, 2017, 83, .	1.4	16
32	Development and application of a TaqMan single nucleotide polymorphism genotyping assay to study infectious laryngotracheitis virus recombination in the natural host. PLoS ONE, 2017, 12, e0174590.	1.1	16
33	Identification of mixed equine rhinitis B virus infections leading to further insight on the relationship between genotype, serotype and acid stability phenotype. Virus Research, 2011, 155, 506-513.	1.1	14
34	Safety and vaccine efficacy of a glycoprotein G deficient strain of infectious laryngotracheitis virus delivered in ovo. Vaccine, 2012, 30, 7193-7198.	1.7	14
35	Polymorphism of open reading frame 71 of equine herpesvirus-4 (EHV-4) and EHV-1. Journal of General Virology, 2002, 83, 525-531.	1.3	14
36	Analysis of the complete genomic sequences of two virus subpopulations of the Australian infectious bronchitis virus vaccine VicS. Avian Pathology, 2015, 44, 182-191.	0.8	13

CAROL A HARTLEY

#	Article	IF	CITATIONS
37	Avian viral surveillance in Victoria, Australia, and detection of two novel avian herpesviruses. PLoS ONE, 2018, 13, e0194457.	1.1	13
38	Infectious Laryngotracheitis Virus Viral Chemokine-Binding Protein Glycoprotein G Alters Transcription of Key Inflammatory Mediators In Vitro and In Vivo. Journal of Virology, 2018, 92, .	1.5	12
39	Detection ofÂCoxiella burnetiiÂand equine herpesvirus 1, but notÂLeptospiraÂspp. orÂToxoplasma gondii,Âin cases of equine abortion in Australia - a 25 year retrospective study. PLoS ONE, 2020, 15, e0233100.	1.1	10
40	Mapping epitopes in equine rhinitis A virus VP1 recognized by antibodies elicited in response to infection of the natural host. Journal of General Virology, 2003, 84, 1607-1612.	1.3	9
41	Equine rhinitis A virus-like particle expressing DNA vaccine induces a virus neutralising immune response in mice. Virus Research, 2011, 158, 294-297.	1.1	8
42	Mapping B-cell epitopes in equine rhinitis B viruses and identification of a neutralising site in the VP1 C-terminus. Veterinary Microbiology, 2012, 155, 128-136.	0.8	8
43	Protection Induced in Broiler Chickens following Drinking-Water Delivery of Live Infectious Laryngotracheitis Vaccines against Subsequent Challenge with Recombinant Field Virus. PLoS ONE, 2015, 10, e0137719.	1.1	8
44	Novel assay to quantify recombination in a calicivirus. Veterinary Microbiology, 2015, 177, 25-31.	0.8	8
45	Development and application of high-resolution melting analysis for the classification of infectious laryngotracheitis virus strains and detection of recombinant progeny. Archives of Virology, 2019, 164, 427-438.	0.9	8
46	Several Recombinant Capsid Proteins of Equine Rhinitis A Virus Show Potential as Diagnostic Antigens. Vaccine Journal, 2005, 12, 778-785.	3.2	7
47	Marsupial and monotreme serum immunoglobulin binding by proteins A, G and L and anti-kangaroo antibody. Journal of Immunological Methods, 2015, 427, 94-99.	0.6	7
48	The first genome sequence of a metatherian herpesvirus: Macropodid herpesvirus 1. BMC Genomics, 2016, 17, 70.	1.2	7
49	Attenuated infectious laryngotracheitis virus vaccines differ in their capacity to establish latency in the trigeminal ganglia of specific pathogen free chickens following eye drop inoculation. PLoS ONE, 2019, 14, e0213866.	1.1	7
50	Development and application of a combined molecular and tissue culture-based approach to detect latent infectious laryngotracheitis virus (ILTV) in chickens. Journal of Virological Methods, 2020, 277, 113797.	1.0	7
51	Pathogenesis and tissue tropism of natural field recombinants of infectious laryngotracheitis virus. Veterinary Microbiology, 2020, 243, 108635.	0.8	6
52	Identification of a neutralizing epitope in the βE–βF loop of VP1 of equine rhinitis A virus, defined by a neutralization-resistant variant. Journal of General Virology, 2004, 85, 2545-2553.	1.3	5
53	Recombinant Herpesvirus Glycoprotein G Improves the Protective Immune Response to Helicobacter pylori Vaccination in a Mouse Model of Disease. PLoS ONE, 2014, 9, e96563.	1.1	5
54	Association of Equine Herpesvirus 5 with Mild Respiratory Disease in a Survey of EHV1, -2, -4 and -5 in 407 Australian Horses. Animals, 2021, 11, 3418.	1.0	5

CAROL A HARTLEY

#	Article	IF	CITATIONS
55	Use of feline herpesvirus as a vaccine vector offers alternative applications for feline health. Veterinary Microbiology, 2021, 261, 109210.	0.8	4
56	Cross-Protective Immune Responses Between Genotypically Distinct Lineages of Infectious Laryngotracheitis Viruses. Avian Diseases, 2013, 58, 147.	0.4	3
57	Seroprevalence study of Equine rhinitis B virus (ERBV) in Australian weanling horses using serotype-specific ERBV enzyme-linked immunosorbent assays. Journal of Veterinary Diagnostic Investigation, 2013, 25, 641-644.	0.5	3
58	Impairment of infectious laryngotracheitis virus replication by deletion of the UL[-1] gene. Archives of Virology, 2017, 162, 1541-1548.	0.9	3
59	Replication-independent reduction in the number and diversity of recombinant progeny viruses in chickens vaccinated with an attenuated infectious laryngotracheitis vaccine. Vaccine, 2018, 36, 5709-5716.	1.7	3
60	Mycoplasma bovis <i>mbfN</i> Encodes a Novel LRR Lipoprotein That Undergoes Proteolytic Processing and Binds Host Extracellular Matrix Components. Journal of Bacteriology, 2020, 203, .	1.0	3
61	Genomic recombination between infectious laryngotracheitis vaccine strains occurs under a broad range of infection conditions in vitro and in ovo. PLoS ONE, 2020, 15, e0229082.	1.1	3
62	Virion associated proteins of equine rhinitis B virus 1 (ERBV1): The non-structural protein 3Cpro co-purifies with virions. Virus Research, 2009, 140, 205-208.	1.1	2
63	Determination of the minimum protective dose of a glycoprotein-C-deficient infectious laryngotracheitis virus vaccine delivered via eye-drop to week-old chickens. PLoS ONE, 2018, 13, e0207611.	1.1	2
64	Koala and Wombat Gammaherpesviruses Encode the First Known Viral NTPDase Homologs and Are Phylogenetically Divergent from All Known Gammaherpesviruses. Journal of Virology, 2019, 93, .	1.5	2
65	Superinfection and recombination of infectious laryngotracheitis virus vaccines in the natural host. Vaccine, 2020, 38, 7508-7516.	1.7	2
66	Single Nucleotide Polymorphism Genotyping Analysis Shows That Vaccination Can Limit the Number and Diversity of Recombinant Progeny of Infectious Laryngotracheitis Viruses from the United States. Applied and Environmental Microbiology, 2018, 84, .	1.4	1
67	Latency characteristics in specific pathogen-free chickens 21 and 35 days after intra-tracheal inoculation with vaccine or field strains of infectious laryngotracheitis virus. Avian Pathology, 2020, 49, 369-379.	0.8	1
68	Genome Sequences of Two Marsupial Simplex Viruses, Macropodid Alphaherpesviruses 2 and 4. Microbiology Resource Announcements, 2021, 10, .	0.3	0