
Stefano Di Stefano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5622224/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanisms of imine exchange reactions in organic solvents. Organic and Biomolecular Chemistry, 2015, 13, 646-654.	2.8	215
2	Fast transimination in organic solvents in the absence of proton and metal catalysts. A key to imine metathesis catalyzed by primary amines under mild conditions. Chemical Science, 2013, 4, 2253.	7.4	174
3	The Bis-Barium Complex of a Butterfly Crown Ether as a Phototunable Supramolecular Catalyst. Journal of the American Chemical Society, 2003, 125, 2224-2227.	13.7	143
4	Effective Molarities in Supramolecular Catalysis of Two-Substrate Reactions. Accounts of Chemical Research, 2004, 37, 113-122.	15.6	140
5	Metathesis Reaction of Formaldehyde Acetals:Â An Easy Entry into the Dynamic Covalent Chemistry of Cyclophane Formation. Journal of the American Chemical Society, 2005, 127, 13666-13671.	13.7	117
6	New horizons for catalysis disclosed by supramolecular chemistry. Chemical Society Reviews, 2021, 50, 7681-7724.	38.1	117
7	Dissipative Catalysis with a Molecular Machine. Angewandte Chemie - International Edition, 2019, 58, 9876-9880.	13.8	116
8	Nonâ€Heme Imineâ€Based Iron Complexes as Catalysts for Oxidative Processes. Advanced Synthesis and Catalysis, 2016, 358, 843-863.	4.3	91
9	Supramolecular Recognition Allows Remote, Siteâ€Selective Câ^'H Oxidation of Methylenic Sites in Linear Amines. Angewandte Chemie - International Edition, 2017, 56, 16347-16351.	13.8	85
10	Abiotic Chemical Fuels for the Operation of Molecular Machines. Angewandte Chemie - International Edition, 2020, 59, 8344-8354.	13.8	76
11	Coupling of the Decarboxylation of 2â€Cyanoâ€2â€phenylpropanoic Acid to Largeâ€Amplitude Motions: A Convenient Fuel for an Acid–Baseâ€Operated Molecular Switch. Angewandte Chemie - International Edition, 2016, 55, 6997-7001.	13.8	74
12	Effective catalysis of imine metathesis by means of fast transiminations between aromatic–aromatic or aromatic–aliphatic amines. Organic and Biomolecular Chemistry, 2014, 12, 3282-3287.	2.8	65
13	Variations in the fuel structure control the rate of the back and forth motions of a chemically fuelled molecular switch. Chemical Science, 2018, 9, 181-188.	7.4	49
14	Toward an Artificial Acetylcholinesterase. Chemistry - A European Journal, 2000, 6, 3228-3234.	3.3	47
15	Supramolecular Catalysis of Ester and Amide Cleavage by a Dinuclear Barium(II) Complex. Angewandte Chemie - International Edition, 1999, 38, 348-351.	13.8	39
16	Enzyme-like substrate-selectivity in C–H oxidation enabled by recognition. Chemical Communications, 2019, 55, 917-920.	4.1	39
17	Dissipative Catalysis with a Molecular Machine. Angewandte Chemie, 2019, 131, 9981-9985.	2.0	37
18	C–H Bond Oxidation Catalyzed by an Imine-Based Iron Complex: A Mechanistic Insight. Inorganic Chemistry, 2015, 54, 10141-10152.	4.0	36

#	Article	IF	CITATIONS
19	Ring-Opening Metathesis Polymerization of a Diolefinic [2]-Catenane–Copper(I) Complex: An Easy Route to Polycatenanes. Macromolecules, 2015, 48, 1358-1363.	4.8	35
20	Theoretical features of macrocyclization equilibria and their application on transacetalation based dynamic libraries. Journal of Physical Organic Chemistry, 2010, 23, 797-805.	1.9	33
21	Direct hydroxylation of benzene and aromatics with H ₂ O ₂ catalyzed by a self-assembled iron complex: evidence for a metal-based mechanism. Catalysis Science and Technology, 2017, 7, 5677-5686.	4.1	33
22	Predictable Selectivity in Remote Câ^'H Oxidation of Steroids: Analysis of Substrate Binding Mode. Angewandte Chemie - International Edition, 2020, 59, 12703-12708.	13.8	33
23	Dissipative operation of pH-responsive DNA-based nanodevices. Chemical Science, 2021, 12, 11735-11739.	7.4	33
24	Target-induced amplification in a dynamic library of macrocycles. A quantitative study. New Journal of Chemistry, 2012, 36, 40-43.	2.8	32
25	Alcohol oxidation with H ₂ O ₂ catalyzed by a cheap and promptly available imine based iron complex. Organic and Biomolecular Chemistry, 2016, 14, 10630-10635.	2.8	32
26	Photoinduced Release of a Chemical Fuel for Acid–Baseâ€Operated Molecular Machines. Chemistry - A European Journal, 2018, 24, 10122-10127.	3.3	32
27	A well-behaved dynamic library of cyclophane formaldehyde acetals incorporating diphenylmethane units. Organic and Biomolecular Chemistry, 2011, 9, 8190.	2.8	31
28	Copper(<scp>i</scp>)-induced amplification of a [2]catenane in a virtual dynamic library of macrocyclic alkenes. Organic and Biomolecular Chemistry, 2014, 12, 6167-6174.	2.8	30
29	Hydrocarbon oxidation catalyzed by a cheap nonheme imine-based iron(ii) complex. Catalysis Science and Technology, 2014, 4, 2900-2903.	4.1	30
30	Substituent Effects on the Catalytic Activity of Bipyrrolidine-Based Iron Complexes. Journal of Organic Chemistry, 2013, 78, 11508-11512.	3.2	29
31	Supramolecular Recognition Allows Remote, Siteâ€Selective Câ^'H Oxidation of Methylenic Sites in Linear Amines. Angewandte Chemie, 2017, 129, 16565-16569.	2.0	29
32	Metathesis Reactions of Formaldehyde Acetals – Experimental and Computational Investigation of Isomeric Families of Cyclophanes under Dynamic Conditions. European Journal of Organic Chemistry, 2008, 2008, 186-195.	2.4	28
33	Applications of dynamic combinatorial chemistry for the determination of effective molarity. Chemical Science, 2015, 6, 144-151.	7.4	28
34	Size-Selective Catalysis of Ester and Anilide Cleavage by the Dinuclear Barium(II) Complexes ofcis- andtrans-Stilbenobis(18-crown-6). Journal of Organic Chemistry, 2002, 67, 521-525.	3.2	27
35	2-Cyano-2-phenylpropanoic Acid Triggers the Back and Forth Motions of an Acid–Base-Operated Paramagnetic Molecular Switch. Journal of Organic Chemistry, 2019, 84, 9364-9368.	3.2	27
36	Coupled X-ray Absorption/UV–vis Monitoring of Fast Oxidation Reactions Involving a Nonheme Iron–Oxo Complex. Journal of the American Chemical Society, 2019, 141, 2299-2304.	13.7	27

#	Article	IF	CITATIONS
37	Highly efficient intramolecular Cannizzaro reaction between 1,3-distal formyl groups at the upper rim of a cone-calix[4]arene. Organic and Biomolecular Chemistry, 2012, 10, 5109.	2.8	26
38	Reactivity of carbonyl and phosphoryl groups at calixarenes. Supramolecular Chemistry, 2013, 25, 537-554.	1.2	25
39	Dinuclear Barium(II) Complexes Based on a Calix[4]arene Scaffold as Catalysts of Acyl Transfer. Chemistry - A European Journal, 2004, 10, 4436-4442.	3.3	24
40	The Hydrolysis of the Anhydride of 2 yanoâ€2â€phenylpropanoic Acid Triggers the Repeated Back and Forth Motions of an Acid–Base Operated Molecular Switch. Chemistry - A European Journal, 2019, 25, 15205-15211.	3.3	24
41	Supramolecular Catalysts Featuring Crown Ethers as Recognition Units. European Journal of Organic Chemistry, 2020, 2020, 3340-3350.	2.4	24
42	Supramolecular Control of Reactivity and Catalysis – Effective Molarities of Recognitionâ€Mediated Bimolecular Reactions. European Journal of Organic Chemistry, 2014, 2014, 7304-7315.	2.4	23
43	A Dinuclear Strontium(II) Complex as Substrate-Selective Catalyst of Ester Cleavage. Journal of Organic Chemistry, 2001, 66, 5926-5928.	3.2	22
44	Oxidation of Aryl Diphenylmethyl Sulfides Promoted by a Nonheme Iron(IV)-Oxo Complex: Evidence for an Electron Transfer-Oxygen Transfer Mechanism. Journal of Organic Chemistry, 2016, 81, 2513-2520.	3.2	22
45	Formation of Imidazo[1,5- <i>a</i>]pyridine Derivatives Due to the Action of Fe ²⁺ on Dynamic Libraries of Imines. Journal of Organic Chemistry, 2017, 82, 3820-3825.	3.2	22
46	Abiotic Chemical Fuels for the Operation of Molecular Machines. Angewandte Chemie, 2020, 132, 8420-8430.	2.0	22
47	Combinatorial Macrocyclizations under Thermodynamic Control: The Two-Monomer Case. Macromolecules, 2009, 42, 4077-4083.	4.8	21
48	One-shot preparation of an inherently chiral trifunctional calix[4]arene from an easily available cone-triformylcalix[4]arene. Organic and Biomolecular Chemistry, 2013, 11, 3642.	2.8	20
49	The canonical behavior of the entropic component of thermodynamic effective molarity. An attempt at unifying covalent and noncovalent cyclizations. Physical Chemistry Chemical Physics, 2019, 21, 955-987.	2.8	20
50	Time-programmable pH: decarboxylation of nitroacetic acid allows the time-controlled rising of pH to a definite value. Chemical Science, 2021, 12, 7460-7466.	7.4	20
51	Coupling of the Decarboxylation of 2-Cyano-2-phenylpropanoic Acid to Large-Amplitude Motions: A Convenient Fuel for an Acid-Base-Operated Molecular Switch. Angewandte Chemie, 2016, 128, 7111-7115.	2.0	19
52	<i>N</i> -Hydroxyphthalimide: A Hydrogen Atom Transfer Mediator in Hydrocarbon Oxidations Promoted by Nonheme Iron(IV)–Oxo Complexes. Journal of Organic Chemistry, 2019, 84, 13549-13556.	3.2	19
53	Time Programmable Locking/Unlocking of the Calix[4]arene Scaffold by Means of Chemical Fuels. Chemistry - A European Journal, 2020, 26, 14954-14962.	3.3	19
54	A Ring-Fusion/Ring-Fission Mechanism for the Metathesis Reaction of Macrocyclic Formaldehyde Acetals. Chemistry - A European Journal, 2006, 12, 8566-8570.	3.3	18

#	Article	IF	CITATIONS
55	Isotope effect profiles in the N-demethylation of N,N-dimethylanilines: a key to determine the pK _a of nonheme Fe(<scp>iii</scp>)–OH complexes. Chemical Communications, 2015, 51, 5032-5035.	4.1	18
56	Temporal Control of the Host–Guest Properties of a Calix[6]arene Receptor by the Use of a Chemical Fuel. Journal of Organic Chemistry, 2022, 87, 3623-3629.	3.2	18
57	Dissipative Dynamic Covalent Chemistry (DDCvC) Based on the Transimination Reaction. Chemistry - A European Journal, 2022, 28, .	3.3	18
58	Chemical Tools for the Temporal Control of Water Solution pH and Applications in Dissipative Systems. European Journal of Organic Chemistry, 2022, 2022, .	2.4	18
59	Dissipative control of the fluorescence of a 1,3-dipyrenyl calix[4]arene in the cone conformation. Organic and Biomolecular Chemistry, 2021, 20, 132-138.	2.8	15
60	Ring-Expanding Polymerization by Reversible Ring Fusion. A Fascinating Process Driven by Entropy. Journal of Physical Chemistry B, 2008, 112, 4662-4665.	2.6	13
61	Direct Mechanistic Evidence for a Nonheme Complex Reaction through a Multivariate XAS Analysis. Inorganic Chemistry, 2020, 59, 9979-9989.	4.0	13
62	Electron Transfer Mechanism in the Oxidation of Aryl 1-Methyl-1-phenylethyl Sulfides Promoted by Nonheme Iron(IV)–Oxo Complexes: The Rate of the Oxygen Rebound Process. Journal of Organic Chemistry, 2016, 81, 12382-12387.	3.2	11
63	Following a Chemical Reaction on the Millisecond Time Scale by Simultaneous X-ray and UV/Vis Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 2958-2963.	4.6	11
64	Controlling the liberation rate of the in situ release of a chemical fuel for the operationally autonomous motions of molecular machines. Organic and Biomolecular Chemistry, 2020, 18, 3867-3873.	2.8	11
65	Concave reagents: Part 40—The copper(II) complex of a concave reagent as a selective catalyst for ester methanolysis. Journal of Physical Organic Chemistry, 2004, 17, 350-355.	1.9	10
66	Oxidative functionalization of aliphatic and aromatic amino acid derivatives with H ₂ O ₂ catalyzed by a nonheme imine based iron complex. RSC Advances, 2018, 8, 19144-19151.	3.6	10
67	Direct structural and mechanistic insights into fast bimolecular chemical reactions in solution through a coupled XAS/UV–Vis multivariate statistical analysis. Dalton Transactions, 2021, 50, 131-142.	3.3	10
68	Following a Silent Metal Ion: A Combined X-ray Absorption and Nuclear Magnetic Resonance Spectroscopic Study of the Zn ²⁺ Cation Dissipative Translocation between Two Different Ligands. Journal of Physical Chemistry Letters, 2022, 13, 5522-5529.	4.6	10
69	Activation of C–H bonds by a nonheme iron(iv)–oxo complex: mechanistic evidence through a coupled EDXAS/UV-Vis multivariate analysis. Physical Chemistry Chemical Physics, 2021, 23, 1188-1196.	2.8	9
70	A Cu ^I â€Based Metalloâ€Supramolecular Gelâ€Like Material Built from a Library of ÂOligomeric Ligands Featuring Exotopic 1,10â€Phenanthroline Units. European Journal of Organic Chemistry, 2015, 2015, 7504-7510.	2.4	7
71	Naphthalenophane formaldehyde acetals as candidate structures for the generation of dynamic libraries via transacetalation processes. Tetrahedron, 2013, 69, 2767-2774.	1.9	6
72	Predictable Selectivity in Remote Câ^'H Oxidation of Steroids: Analysis of Substrate Binding Mode. Angewandte Chemie, 2020, 132, 12803-12808.	2.0	6

#	Article	IF	CITATIONS
73	Two Faces of the Same Coin: Coupling Xâ€Ray Absorption and NMR Spectroscopies to Investigate the Exchange Reaction Between Prototypical Cu Coordination Complexes. Chemistry - A European Journal, 2022, 28, .	3.3	6
74	Catenation Equilibria Between Ring Oligomers and Their Relation to Effective Molarities: Models From Theories and Simulations. Macromolecular Theory and Simulations, 2016, 25, 63-73.	1.4	5
75	Statistical Ring Catenation under Thermodynamic Control: Should the Jacobson–Stockmayer Cyclization Theory Take into Account Catenane Formation?. Journal of Physical Chemistry B, 2017, 121, 649-656.	2.6	5
76	Easy Synthesis of a Selfâ€Assembled Imineâ€Based Iron(II) Complex Endowed with Crownâ€Ether Receptors. European Journal of Organic Chemistry, 2020, 2020, 3390-3397.	2.4	5
77	Insight into the chemoselective aromatic vs. side-chain hydroxylation of alkylaromatics with H2O2 catalyzed by a non-heme imine-based iron complex. Catalysis Science and Technology, 2021, 11, 171-178.	4.1	5
78	Insights into the Structure of Reaction Intermediates Through Coupled X-ray Absorption/UV-Vis Spectroscopy. Springer Proceedings in Physics, 2021, , 141-154.	0.2	5
79	Role of electron transfer processes in the oxidation of aryl sulfides catalyzed by nonheme iron complexes. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 241-244.	1.6	4
80	Change of Selectivity in C–H Functionalization Promoted by Nonheme Iron(IV)-oxo Complexes by the Effect of the <i>N</i> -hydroxyphthalimide HAT Mediator. ACS Omega, 2021, 6, 26428-26438.	3.5	4
81	Catalysis of Acyl Transfer Processes by Crown-Ether Supported Alkaline-Earth Metal Ions. , 0, , 113-142.		3
82	Inherently chiral cone-calix[4]arenes via a subsequent upper rim ring-closing/opening methodology. Organic and Biomolecular Chemistry, 2018, 16, 7255-7264.	2.8	3
83	Influence of topology on the gelation behavior of coordination polymers prepared via ROMP of macrocyclic olefins. Journal of Polymer Science Part A, 2017, 55, 1237-1242.	2.3	2
84	Increasing the steric hindrance around the catalytic core of a self-assembled imine-based non-heme iron catalyst for C–H oxidation. RSC Advances, 2021, 11, 537-542.	3.6	2