
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5622198/publications.pdf Version: 2024-02-01

HONG-SHULWANG

#	Article	IF	CITATIONS
1	Fabrication of GO-TiO2/(Ca,Y)F2:Tm,Yb composites with high-efficiency optical driving photocatalytic activity for degradation of organic dyes and bacteriostasis. Rare Metals, 2022, 41, 650-662.	7.1	18
2	Antibacterial Vancomycin@ZIF-8 Loaded PVA Nanofiber Membrane for Infected Bone Repair. International Journal of Molecular Sciences, 2022, 23, 5629.	4.1	9
3	Structure design and biological evaluation of the mechanical-adaptive titanium-based porous implants. Materials Technology, 2021, 36, 851-856.	3.0	8
4	Preparation and surface modification of 3D printed Ti–6Al–4V porous implant. Rare Metals, 2021, 40, 1164-1172.	7.1	19
5	3D MXene microspheres with honeycomb architecture for tumor photothermal/photodynamic/chemo combination therapy. Nanotechnology, 2021, 32, 195701.	2.6	14
6	Thermosensitive -hydrogel-coated titania nanotubes with controlled drug release and immunoregulatory characteristics for orthopedic applications. Materials Science and Engineering C, 2021, 122, 111878.	7.3	23
7	Laser-modified Fe–30Mn surfaces with promoted biodegradability and biocompatibility toward biological applications. Journal of Materials Science, 2021, 56, 13772-13784.	3.7	10
8	Femtosecond laser-induced nanoporous layer for enhanced osteogenesis of titanium implants. Materials Science and Engineering C, 2021, 127, 112247.	7.3	12
9	Preparation of (CaY)F ₂ :Tm ³⁺ ,Yb ³⁺ deposited porous TiO ₂ matrix with highly nearâ€infrared light photocatalytic activity. Micro and Nano Letters, 2021, 16, 83-89.	1.3	1
10	Paclitaxel-loaded lignin particle encapsulated into electrospun PVA/PVP composite nanofiber for effective cervical cancer cell inhibition. Nanotechnology, 2021, 32, 015101.	2.6	21
11	Carbon nanotube-collagen@hydroxyapatite composites with improved mechanical and biological properties fabricated by a multi in situ synthesis process. Biomedical Microdevices, 2020, 22, 64.	2.8	13
12	Biological and antibacterial properties of TiO2 coatings containing Ca/P/Ag by one-step and two-step methods. Biomedical Microdevices, 2020, 22, 24.	2.8	12
13	Laser Polishing of Ti6Al4V Fabricated by Selective Laser Melting. Metals, 2020, 10, 191.	2.3	56
14	Self-adjusting antibacterial properties of Ag-incorporated nanotubes on micro-nanostructured Ti surfaces. Biomaterials Science, 2019, 7, 4075-4087.	5.4	24
15	Corrosion Resistance and Biological Properties of Anatase and Rutile Coatings on a Titanium Surface. Chemistry Letters, 2019, 48, 1355-1357.	1.3	5
16	Biological and antibacterial properties of the micro-nanostructured hydroxyapatite/chitosan coating on titanium. Scientific Reports, 2019, 9, 14052.	3.3	56
17	Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated via novel in situ synthesis process. Journal of Alloys and Compounds, 2019, 785, 146-155.	5.5	35
18	Synthesis and Characterization of Flower-like Carbon-encapsulated Fe-C Nanoparticles for Application as Adsorbing Material. Materials, 2019, 12, 829.	2.9	3

#	Article	IF	CITATIONS
19	Preparation and properties of carbon nanotube (Fe)/hydroxyapatite composite as magnetic targeted drug delivery carrier. Materials Science and Engineering C, 2019, 97, 222-229.	7.3	51
20	Hydrophilicity of bioactive titanium surface with different structure, composition, crystal form and grain size. Materials Letters, 2018, 218, 177-180.	2.6	9
21	Fabrication and properties of magnesium matrix composite reinforced by urchin-like carbon nanotube-alumina in situ composite structure. Journal of Alloys and Compounds, 2018, 746, 320-327.	5.5	22
22	Microstructure and hydrogen absorption/desorption properties of Mg24Y3M (MÂ=ÂNi, Co, Cu, Al) alloys. International Journal of Hydrogen Energy, 2018, 43, 8877-8887.	7.1	23
23	Graphene Oxide Hybridized nHAC/PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells. Nanoscale Research Letters, 2018, 13, 15.	5.7	52
24	Influence of surface structures on biocompatibility of TiO 2 /HA coatings prepared by MAO. Materials Chemistry and Physics, 2018, 215, 339-345.	4.0	56
25	Carbon nanotube-reinforced mesoporous hydroxyapatite composites with excellent mechanical and biological properties for bone replacement material application. Materials Science and Engineering C, 2017, 77, 1078-1087.	7.3	40
26	Biological and Mechanical Effects of Micro-Nanostructured Titanium Surface on an Osteoblastic Cell Line In vitro and Osteointegration In vivo. Applied Biochemistry and Biotechnology, 2017, 183, 280-292.	2.9	28
27	Effect of graphite (GR) content on microstructure and hydrogen storage properties of nanocrystalline Mg24Y3–Ni–GR composites. Journal of Alloys and Compounds, 2017, 726, 498-506.	5.5	13
28	Corrosion resistance and biological properties of a micro–nano structured Ti surface consisting of TiO ₂ and hydroxyapatite. RSC Advances, 2017, 7, 33285-33292.	3.6	13
29	Near infrared ray to ultraviolet up-conversion luminescence of Tm3+–Yb3+ co-doped (CaY)F2 nanocrystals. Journal of Materials Science: Materials in Electronics, 2017, 28, 12290-12296.	2.2	5
30	Biomimetic cardiovascular stents for inÂvivo re-endothelialization. Biomaterials, 2016, 103, 170-182.	11.4	86
31	Surface Roughness and Hydrophilicity of Titanium after Anodic Oxidation. Rare Metal Materials and Engineering, 2016, 45, 858-862.	0.8	21
32	Corrosion resistance and mechanical properties of titanium with hierarchical micro-nanostructure. Materials Letters, 2016, 182, 43-46.	2.6	31
33	Fabrication and properties of carbon nanotube-reinforced hydroxyapatite composites by a double in situ synthesis process. Carbon, 2016, 101, 159-167.	10.3	50
34	Formation mechanism and adhesive strength of a hydroxyapatite/TiO2 composite coating on a titanium surface prepared by micro-arc oxidation. Applied Surface Science, 2016, 362, 109-114.	6.1	87
35	Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method. Materials Science and Engineering C, 2015, 51, 80-86.	7.3	23
36	Femtosecond laser induced micropatterns and in-situ deposition of Ca/P phase and collagen on Ti surface. Materials Chemistry and Physics, 2015, 158, 115-120.	4.0	6

#	Article	IF	CITATIONS
37	Influence of nanostructures on the biological properties of Ti implants after anodic oxidation. Journal of Materials Science: Materials in Medicine, 2014, 25, 199-205.	3.6	27
38	Preparation of Hydrophobic and Oleophilic Surface of 316ÂL Stainless Steel by Femtosecond Laser Irradiation in Water. Journal of Dispersion Science and Technology, 2014, 35, 1345-1350.	2.4	12
39	Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation. Applied Surface Science, 2014, 307, 202-208.	6.1	26
40	Effects of adding different types of carbon on the structure and magnetic properties of SmCo6.9Hf0.1 alloy. Journal of Rare Earths, 2013, 31, 1168-1174.	4.8	2
41	Femtosecond Laser-Induced Micropattern and Ca/P Deposition on Ti Implant Surface and Its Acceleration on Early Osseointegration. ACS Applied Materials & Interfaces, 2013, 5, 8179-8186.	8.0	68
42	Anodic Oxidation Modification Improve Bioactivity and Biocompatibility of Titanium Implant Surface. Journal of Hard Tissue Biology, 2013, 22, 351-358.	0.4	12
43	Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser. Applied Surface Science, 2012, 261, 337-342.	6.1	43
44	Synthesis of uniform BN-coated aluminum borate nanowhiskers and their applications in reinforced magnesium matrix composites. Materials Chemistry and Physics, 2012, 132, 347-353.	4.0	6
45	Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass. Applied Surface Science, 2010, 256, 3653-3660.	6.1	37
46	Bioactivities of a Ti surface ablated with a femtosecond laser through SBF. Biomedical Materials (Bristol), 2010, 5, 054115.	3.3	21
47	Effects of femtosecond laser ablation on the surface morphology and microstructure of a bulk TiCuPdZr glass alloy. Rare Metals, 2009, 28, 272-276.	7.1	2
48	Surface microstructuring of Ti plates by femtosecond lasers in liquid ambiences: a new approach to improving biocompatibility. Optics Express, 2009, 17, 21124.	3.4	48
49	Fusion of biocompatible Ca/P elements with implantable metals by femtosecond laser microstructuring in liquids. , 2009, , .		0
50	Sub-wavelength surface structuring of NiTi alloy by femtosecond laser pulses. Applied Physics A: Materials Science and Processing, 2008, 92, 635-642.	2.3	26
51	Preparation of porous microstructures on NiTi alloy surface with femtosecond laser pulses. Science Bulletin, 2008, 53, 700-705.	1.7	17
52	Surface modification of cp-Ti using femtosecond laser micromachining and the deposition of Ca/P layer. Materials Letters, 2008, 62, 3783-3786.	2.6	11
53	Ultra-broadband enhanced absorption of metal surfaces structured by femtosecond laser pulses. Optics Express, 2008, 16, 11259.	3.4	91
54	Controllable ZnO morphology via simple template-free solution route. Materials Chemistry and Physics, 2007, 102, 7-12.	4.0	25

#	Article	IF	CITATIONS
55	Effects of coupling agents on the properties of epoxy-based electrically conductive adhesives. International Journal of Adhesion and Adhesives, 2006, 26, 406-413.	2.9	119
56	Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. Journal of Colloid and Interface Science, 2006, 302, 370-373.	9.4	142
57	Effects of temperature on indium tin oxide particles synthesized by co-precipitation. Journal of Crystal Growth, 2006, 289, 151-156.	1.5	60
58	A novel chemical route to prepare ZnO nanoparticles. Materials Letters, 2006, 60, 1828-1832.	2.6	151
59	Mechanisms of PVP in the preparation of silver nanoparticles. Materials Chemistry and Physics, 2005, 94, 449-453.	4.0	554