Udayan Apte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5622032/publications.pdf

Version: 2024-02-01

		126708		118652
83	4,120	33		62
papers	citations	h-index		g-index
			. '	
88	88	88		6338
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Mutant IDH inhibits HNF-4 \hat{l} ± to block hepatocyte differentiation and promote biliary cancer. Nature, 2014, 513, 110-114.	13.7	367
2	Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. Advances in Pharmacology, 2015, 74, 263-302.	1.2	210
3	Global Analysis of Plasma Lipids Identifies Liver-Derived Acylcarnitines as a Fuel Source for Brown Fat Thermogenesis. Cell Metabolism, 2017, 26, 509-522.e6.	7.2	185
4	Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. Journal of Experimental Medicine, 2014, 211, 2249-2263.	4.2	170
5	$TGF\hat{I}^2$ inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Science Translational Medicine, 2018, 10, .	5. 8	161
6	Wnt∫î²-catenin signaling mediates oval cell response in rodents. Hepatology, 2008, 47, 288-295.	3.6	157
7	Enhanced liver regeneration following changes induced by hepatocyte-specific genetic ablation of integrin-linked kinase. Hepatology, 2009, 50, 844-851.	3.6	147
8	Beta-Catenin Activation Promotes Liver Regeneration after Acetaminophen-Induced Injury. American Journal of Pathology, 2009, 175, 1056-1065.	1.9	143
9	Pro-Regenerative Signaling after Acetaminophen-Induced Acute Liver Injury in Mice Identified Using a Novel Incremental Dose Model. American Journal of Pathology, 2014, 184, 3013-3025.	1.9	143
10	Wnt'er in liver: Expression of Wnt and frizzled genes in mouse. Hepatology, 2007, 45, 195-204.	3.6	131
11	Deregulation of Hippo kinase signalling in Human hepatic malignancies. Liver International, 2012, 32, 38-47.	1.9	125
12	Role of Hepatocyte Nuclear Factor 4α (HNF4α) in Cell Proliferation and Cancer. Gene Expression, 2015, 16, 101-108.	0.5	123
13	Increased Activation of the Wnt/ \hat{l}^2 -Catenin Pathway in Spontaneous Hepatocellular Carcinoma Observed in Farnesoid X Receptor Knockout Mice. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 12-21.	1.3	118
14	Hepatocyte nuclear factor 4 alpha deletion promotes diethylnitrosamine-induced hepatocellular carcinoma in rodents. Hepatology, 2013, 57, 2480-2490.	3.6	113
15	Liver Regeneration after Acetaminophen Hepatotoxicity. American Journal of Pathology, 2019, 189, 719-729.	1.9	111
16	Activation of Wnt/l²-catenin pathway during hepatocyte growth factor–induced hepatomegaly in mice. Hepatology, 2006, 44, 992-1002.	3.6	107
17	siRNA-Mediated \hat{I}^2 -Catenin Knockdown in Human Hepatoma Cells Results in Decreased Growth and Survival. Neoplasia, 2007, 9, 951-959.	2.3	107
18	\hat{l}^2 -Catenin is critical for early postnatal liver growth. American Journal of Physiology - Renal Physiology, 2007, 292, G1578-G1585.	1.6	105

#	Article	IF	Citations
19	Fibroblast growth factor 15 deficiency impairs liver regeneration in mice. American Journal of Physiology - Renal Physiology, 2014, 306, G893-G902.	1.6	86
20	Hepatocyte-specific deletion of farnesoid X receptor delays but does not inhibit liver regeneration after partial hepatectomy in mice. Hepatology, 2012, 56, 2344-2352.	3.6	83
21	Hepatocyte-specific deletion of hepatocyte nuclear factor-4α in adult mice results in increased hepatocyte proliferation. American Journal of Physiology - Renal Physiology, 2013, 304, G26-G37.	1.6	83
22	Liver-specific ablation of integrin-linked kinase in mice results in abnormal histology, enhanced cell proliferation, and hepatomegaly. Hepatology, 2008, 48, 1932-1941.	3.6	79
23	Sustained O-GlcNAcylation reprograms mitochondrial function to regulate energy metabolism. Journal of Biological Chemistry, 2017, 292, 14940-14962.	1.6	79
24	Hepatocyte Nuclear Factor 4 Alpha Activation Is Essential for Termination of Liver Regeneration in Mice. Hepatology, 2019, 70, 666-681.	3.6	68
25	The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Toxicology and Applied Pharmacology, 2016, 304, 18-29.	1.3	65
26	Role of Bile Acids in Liver Injury and Regeneration following Acetaminophen Overdose. American Journal of Pathology, 2013, 183, 1518-1526.	1.9	64
27	Suppression of Autophagic Flux by Bile Acids in Hepatocytes. Toxicological Sciences, 2014, 137, 478-490.	1.4	56
28	Functional compensation precedes recovery of tissue mass following acute liver injury. Nature Communications, 2020, 11, 5785.	5.8	56
29	Dual Role of Epidermal Growth Factor Receptor in Liver Injury and Regeneration after Acetaminophen Overdose in Mice. Toxicological Sciences, 2017, 155, 363-378.	1.4	49
30	Bile acids promote diethylnitrosamine-induced hepatocellular carcinoma via increased inflammatory signaling. American Journal of Physiology - Renal Physiology, 2016, 311, G91-G104.	1.6	45
31	Dual catenin loss in murine liver causes tight junctional deregulation and progressive intrahepatic cholestasis. Hepatology, 2018, 67, 2320-2337.	3.6	40
32	Why is elevation of serum cholesterol associated with exposure to perfluoroalkyl substances (PFAS) in humans? A workshop report on potential mechanisms. Toxicology, 2021, 459, 152845.	2.0	40
33	Mechanisms and biomarkers of liver regeneration after drug-induced liver injury. Advances in Pharmacology, 2019, 85, 241-262.	1.2	38
34	Pleiotropic Role of p53 in Injury and Liver Regeneration after Acetaminophen Overdose. American Journal of Pathology, 2018, 188, 1406-1418.	1.9	36
35	A negative reciprocal regulatory axis between cyclin D1 and HNF4 $\hat{l}\pm$ modulates cell cycle progression and metabolism in the liver. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17177-17186.	3.3	34
36	Yes-associated protein is involved in proliferation and differentiation during postnatal liver development. American Journal of Physiology - Renal Physiology, 2012, 302, G493-G503.	1.6	33

#	Article	IF	CITATIONS
37	Inhibition of Glycogen Synthase Kinase 3 Accelerated Liver Regeneration after Acetaminophen-Induced Hepatotoxicity in Mice. American Journal of Pathology, 2017, 187, 543-552.	1.9	31
38	Modulation of O-GlcNAc Levels in the Liver Impacts Acetaminophen-Induced Liver Injury by Affecting Protein Adduct Formation and Glutathione Synthesis. Toxicological Sciences, 2018, 162, 599-610.	1.4	26
39	The inhibitor of glycerol 3-phosphate acyltransferase FSG67 blunts liver regeneration after acetaminophen overdose by altering GSK3β and Wnt/β-catenin signaling. Food and Chemical Toxicology, 2019, 125, 279-288.	1.8	24
40	Progressive loss of hepatocyte nuclear factor 4 alpha activity in chronic liver diseases in humans. Hepatology, 2022, 76, 372-386.	3.6	24
41	Paradoxical Protective Effect of Perfluorooctanesulfonic Acid Against High-Fat Diet–Induced Hepatic Steatosis in Mice. International Journal of Toxicology, 2018, 37, 383-392.	0.6	22
42	DNA Damage Response Regulates Initiation of Liver Regeneration Following Acetaminophen Overdose. Gene Expression, 2018, 18, 115-123.	0.5	21
43	Disruption of Estrogen Receptor Alpha in Rats Results in Faster Initiation of Compensatory Regeneration Despite Higher Liver Injury After Carbon Tetrachloride Treatment. International Journal of Toxicology, 2017, 36, 199-206.	0.6	18
44	Leukocyte cell derived chemotaxin-2 (Lect2) as a predictor of survival in adult acute liver failure. Translational Gastroenterology and Hepatology, 2019, 4, 17-17.	1.5	18
45	Regulation of Liver Regeneration by Hepatocyte O-GlcNAcylation in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1510-1529.	2.3	18
46	Mg ²⁺ /Mn ²⁺ -Dependent Phosphatase 1A Is Involved in Regulating Pregnane X Receptor–Mediated Cytochrome p450 3A4 Gene Expression. Drug Metabolism and Disposition, 2015, 43, 385-391.	1.7	16
47	GenX induces fibroinflammatory gene expression in primary human hepatocytes. Toxicology, 2022, 477, 153259.	2.0	13
48	Models to Study Liver Regeneration. , 2015, , 15-40.		10
49	Liver-Specific Deletion of Integrin-Linked Kinase in Mice Attenuates Hepatotoxicity and Improves Liver Regeneration After Acetaminophen Overdose. Gene Expression, 2016, 17, 35-45.	0.5	10
50	Increased YAP Activation Is Associated With Hepatic Cyst Epithelial Cell Proliferation in ARPKD/CHF. Gene Expression, 2017, 17, 313-326.	0.5	10
51	Global gene expression changes in liver following hepatocyte nuclear factor 4 alpha deletion in adult mice. Genomics Data, 2015, 5, 126-128.	1.3	9
52	Evidence for a "Pathogenic Triumvirate―in Congenital Hepatic Fibrosis in Autosomal Recessive Polycystic Kidney Disease. BioMed Research International, 2016, 2016, 1-10.	0.9	9
53	Inhibition of Mast Cell Degranulation With Cromolyn Sodium Exhibits Organ-Specific Effects in Polycystic Kidney (PCK) Rats. International Journal of Toxicology, 2018, 37, 308-326.	0.6	9
54	Acetaminophen Test Battery (ATB): A Comprehensive Method to Study Acetaminophen-Induced Acute Liver Injury. Gene Expression, 2020, 20, 125-138.	0.5	9

#	Article	IF	CITATIONS
55	Comparison of liver regeneration after partial hepatectomy and acetaminophen-induced acute liver failure: A global picture based on transcriptome analysis. Food and Chemical Toxicology, 2020, 139, 111186.	1.8	8
56	Hepatocyte-Specific Deletion of Yes-Associated Protein Improves Recovery From Acetaminophen-Induced Acute Liver Injury. Toxicological Sciences, 2021, 184, 276-285.	1.4	8
57	A Brief Report of Immunohistochemical Markers to Identify Aggressive Hepatoblastoma. Applied Immunohistochemistry and Molecular Morphology, 2018, 26, 654-657.	0.6	7
58	IFTâ€A deficiency in juvenile mice impairs biliary development and exacerbates ADPKD liver disease. Journal of Pathology, 2021, 254, 289-302.	2.1	7
59	Wnt/β-Catenin Signaling Drives Thioacetamide-Mediated Heteroprotection Against Acetaminophen-Induced Lethal Liver Injury. Dose-Response, 2017, 15, 155932581769028.	0.7	6
60	Mutational mimics of allosteric effectors: a genome editing design to validate allosteric drug targets. Scientific Reports, 2019, 9, 9031.	1.6	6
61	Hepatocyte-Specific Hepatocyte Nuclear Factor 4 Alpha (HNF4) Deletion Decreases Resting Energy Expenditure by Disrupting Lipid and Carbohydrate Homeostasis. Gene Expression, 2021, 20, 157-168.	0.5	4
62	O-GlcNAc cycling mediates energy balance by regulating caloric memory. Appetite, 2021, 165, 105320.	1.8	4
63	Dual Î ² -Catenin and Î ³ -Catenin Loss in Hepatocytes Impacts Their Polarity through Altered Transforming Growth Factor-Î ² and Hepatocyte Nuclear Factor 4α Signaling. American Journal of Pathology, 2021, 191, 885-901.	1.9	3
64	Mechanisms of Termination of Liver Regeneration. , 2015, , 103-111.		2
65	Deciphering the Cellâ€Specific Role of Wnts in the Liver: New Tools for a Difficult Task. Hepatology, 2018, 68, 412-414.	3.6	2
66	Liver Regeneration., 2015,, 2-11.		1
67	Heparan sulfate promotes recovery from acute liver injury: Inhibition of progressive cell death or enhanced regeneration?. Hepatology, 2017, 66, 1381-1383.	3.6	1
68	Bile Acids: Connecting Link Between Autophagy and Gut Microbiome. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1209-1210.	2.3	1
69	Bile acid depletion increases susceptibility to acetaminophenâ€induced hepatotoxicity in mice. FASEB Journal, 2013, 27, 387.1.	0.2	1
70	The Benevolent Bile: Bile Acids as Stimulants of Liver Regeneration. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1478-1480.	2.3	1
71	Futracellular Cignals Involved in Liver Degeneration 2015 CF 75		
	Extracellular Signals Involved in Liver Regeneration. , 2015, , 65-75.		O

#	Article	IF	CITATIONS
73	Role of Hippo Kinase Pathway In Pathogenesis of Hepatocellular Carcinoma FASEB Journal, 2009, 23, 117.11.	0.2	O
74	Yesâ€essociated protein expression is induced in hepatocellular carcinoma and is responsive to cell density FASEB Journal, 2010, 24, 349.5.	0.2	0
75	Hepatocyte Nuclear Factor 4 alpha (HNF4α) is involved in regulation of hepatocyte proliferation. FASEB Journal, 2010, 24, 236.2.	0.2	O
76	Modulation of autophagy by bile acids in hepatocytes and liver. FASEB Journal, 2012, 26, 396.4.	0.2	0
77	Hepatocyte Nuclear Factor 4 alpha (HNF4α) Knockdown Stimulates Proâ€Mitogenic Gene Expression in Hepatocytes. FASEB Journal, 2012, 26, 274.7.	0.2	O
78	Liver Specific Knockout Atg5 Causes Persistent Activation of Nrf2 and Protects Against Acetaminophenâ€Induced Liver Injury. FASEB Journal, 2012, 26, 396.3.	0.2	0
79	Role of bile acids in autophagy and alcoholâ€induced liver injury. FASEB Journal, 2013, 27, 1086.5.	0.2	O
80	Role of Hepatocyte Nuclear Factor 4 alpha in Promotion of Hepatocellular Carcinoma. FASEB Journal, 2013, 27, 387.11.	0.2	0
81	Bile Acids Promote Diethylnitrosamineâ€induced Hepatocellular Carcinoma via Increased Inflammatory Signaling FASEB Journal, 2015, 29, 45.9.	0.2	O
82	Single Cell RNAâ€sequencing (scRNAâ€seq) Reveals Reprogramming and Functional Compensation Preceding Cellular Recovery in Multiple Models of Acute Liver Injury. FASEB Journal, 2019, 33, 369.4.	0.2	0
83	Rebuttal to: Melancholé: the Dark Side of Bile Acids and Its Cellular Consequences. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1477.	2.3	О