Paolo Maria Scrimin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5621844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts. Angewandte Chemie - International Edition, 2004, 43, 6165-6169.	13.8	474
2	Artificial metallonucleases. Chemical Communications, 2005, , 2540.	4.1	384
3	Dissipative self-assembly of vesicular nanoreactors. Nature Chemistry, 2016, 8, 725-731.	13.6	355
4	Gold nanoparticles-based protease assay. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3978-3982.	7.1	274
5	Exploiting the Self-Assembly Strategy for the Design of Selective Cull Ion Chemosensors. Angewandte Chemie - International Edition, 1999, 38, 3061-3064.	13.8	183
6	Progress in artificial metallonucleases. Chemical Communications, 2012, 48, 5545.	4.1	163
7	Dinuclear Zn2+Complexes of Synthetic Heptapeptides as Artificial Nucleases. Journal of the American Chemical Society, 2001, 123, 3169-3170.	13.7	153
8	Sensing through signal amplification. Chemical Society Reviews, 2011, 40, 4488.	38.1	153
9	Self-Assembly of a Catalytic Multivalent Peptide–Nanoparticle Complex. Journal of the American Chemical Society, 2012, 134, 8396-8399.	13.7	150
10	Phosphate Diester and DNA Hydrolysis by a Multivalent, Nanoparticle-Based Catalyst. Journal of the American Chemical Society, 2008, 130, 15744-15745.	13.7	147
11	Carboxylateâ^Imidazole Cooperativity in Dipeptide-Functionalized Gold Nanoparticles with Esterase-like Activity. Journal of the American Chemical Society, 2005, 127, 1616-1617.	13.7	139
12	Amphiphilic metalloaggregates: Catalysis, transport, and sensing. Coordination Chemistry Reviews, 2009, 253, 2150-2165.	18.8	131
13	Functional gold nanoparticles for recognition and catalysis. Journal of Materials Chemistry, 2004, 14, 3481.	6.7	124
14	Metallomicelles as catalysts of the hydrolysis of carboxylic and phosphoric acid esters. Journal of Organic Chemistry, 1991, 56, 161-166.	3.2	105
15	The First Water-Soluble 310-Helical Peptides. Chemistry - A European Journal, 2000, 6, 4498-4504.	3.3	105
16	Bolaform and classical cationic metallomicelles as catalysts of the cleavage of p-nitrophenyl picolinate. Journal of the American Chemical Society, 1989, 111, 224-229.	13.7	104
17	Efficient Phosphodiester Cleaving Nanozymes Resulting from Multivalency and Local Medium Polarity Control. Journal of the American Chemical Society, 2014, 136, 1158-1161.	13.7	101
18	Substrate Modulation of the Activity of an Artificial Nanoesterase Made of Peptide-Functionalized Gold Nanoparticles. Angewandte Chemie - International Edition, 2007, 46, 400-404.	13.8	96

#	Article	IF	CITATIONS
19	N-Methylimidazole-functionalized gold nanoparticles as catalysts for cleavage of a carboxylic acid ester. Chemical Communications, 2000, , 2253-2254.	4.1	95
20	Quantitative Correlation of Solvent Polarity with the α-/310-Helix Equilibrium: A Heptapeptide Behaves as a Solvent-Driven Molecular Spring. Angewandte Chemie - International Edition, 2003, 42, 3388-3392.	13.8	91
21	Detection of Enzyme Activity through Catalytic Signal Amplification with Functionalized Gold Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 2307-2312.	13.8	87
22	Oligopeptide Foldamers: From Structure to Function. European Journal of Organic Chemistry, 2005, 2005, 969-977.	2.4	86
23	A Bimetallic Helical Heptapeptide as a Transphosphorylation Catalyst in Water. Journal of the American Chemical Society, 1999, 121, 6948-6949.	13.7	84
24	Covalent Capture: Merging Covalent and Noncovalent Synthesis. Angewandte Chemie - International Edition, 2009, 48, 2288-2306.	13.8	84
25	Nitrate uptake and ATPase activity in oat seedlings in the presence of two humic fractions. Soil Biology and Biochemistry, 1991, 23, 833-836.	8.8	83
26	A peptide template as an allosteric supramolecular catalyst for the cleavage of phosphate esters. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5144-5149.	7.1	81
27	Effect of Core Size on the Partition of Organic Solutes in the Monolayer of Water-Soluble Nanoparticles:A An ESR Investigation. Journal of the American Chemical Society, 2005, 127, 16384-16385.	13.7	81
28	Catalytic Selfâ€Assembled Monolayers on Au Nanoparticles: The Source of Catalysis of a Transphosphorylation Reaction. Chemistry - A European Journal, 2011, 17, 4879-4889.	3.3	81
29	Synthesis, characterization and properties of water-soluble gold nanoparticles with tunable core size. Journal of Materials Chemistry, 2003, 13, 2471-2478.	6.7	77
30	EPR Study of Dialkyl Nitroxides as Probes to Investigate the Exchange of Solutes between the Ligand Shell of Monolayers of Protected Gold Nanoparticles and Aqueous Solutions. Journal of the American Chemical Society, 2004, 126, 9326-9329.	13.7	75
31	Nucleophilic catalysis of hydrolyses of phosphate and carboxylate esters by metallomicelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 144, 71-79.	4.7	74
32	Asymmetric reductions by sodium borohydride of ketonebetacyclodextrin complexes. Journal of Organic Chemistry, 1985, 50, 3209-3211.	3.2	69
33	Expeditious Synthesis of Water-Soluble, Monolayer-Protected Gold Nanoparticles of Controlled Size and Monolayer Composition. Langmuir, 2008, 24, 4120-4124.	3.5	68
34	Chiral Lipophilic Ligands. 1. Enantioselective Cleavage of .alphaAmino Acid Esters in Metallomicellar Aggregates. Journal of Organic Chemistry, 1994, 59, 4194-4201.	3.2	65
35	Reversible Aggregation/Deaggregation of Gold Nanoparticles Induced by a Cleavable Dithiol Linker. Langmuir, 2005, 21, 5537-5541.	3.5	65
36	Nanozymes: Functional Nanoparticle-based Catalysts. Supramolecular Chemistry, 2005, 17, 163-171.	1.2	65

#	Article	IF	CITATIONS
37	Metallodendrimers as Transphosphorylation Catalysts. Journal of the American Chemical Society, 2007, 129, 6982-6983.	13.7	65
38	Comparative Reactivities of Phosphate Ester Cleavages by Metallomicelles. Langmuir, 1996, 12, 6235-6241.	3.5	63
39	Source of catalysis of dephosphorylation of p-nitrophenyldiphenylphosphate by metallomicelles. Journal of the Chemical Society Perkin Transactions II, 1996, , 419.	0.9	61
40	Phosphate diesters cleavage mediated by Ce(iv) complexes self-assembled on gold nanoparticles. Organic and Biomolecular Chemistry, 2010, 8, 2622.	2.8	59
41	Micellar extraction: removal of copper(II) by micelle-solubilized complexing agents of varying HLB using ultrafiltration. Langmuir, 1993, 9, 950-955.	3.5	58
42	Kinetics of "extraction" of copper(II) by micelle-solubilized complexing agents of varying hydrophilic lipophilic balance. 1. Stopped-flow study. The Journal of Physical Chemistry, 1992, 96, 11072-11078.	2.9	56
43	De novo Metallonucleases Based on Helix–Loop–Helix Motifs. Chemistry - A European Journal, 2004, 10, 4163-4170.	3.3	56
44	Hydrolytic Metallo-Nanozymes: From Micelles and Vesicles to Gold Nanoparticles. Molecules, 2016, 21, 1014.	3.8	56
45	Cationic metallovesicles: catalysis of the cleavage of p-nitrophenyl picolinate and control of copper(II) permeation. Journal of the American Chemical Society, 1992, 114, 5086-5092.	13.7	54
46	Tripodal, Cooperative, and Allosteric Transphosphorylation Metallocatalysts. Journal of Organic Chemistry, 2007, 72, 376-385.	3.2	52
47	Multivalent, Saccharideâ€Functionalized Gold Nanoparticles as Fully Synthetic Analogs of Type A <i>Neisseria meningitidis</i> Antigens. Advanced Materials, 2008, 20, 4348-4352.	21.0	52
48	Chiral Nanozymes–Gold Nanoparticleâ€Based Transphosphorylation Catalysts Capable of Enantiomeric Discrimination. Chemistry - A European Journal, 2016, 22, 7028-7032.	3.3	52
49	Model membranes: developments in functional micelles and vesicles. Current Opinion in Chemical Biology, 1999, 3, 730-735.	6.1	50
50	Synthesis of a Stable Helical Peptide and Grafting on Gold Nanoparticles. Langmuir, 2003, 19, 2521-2524.	3.5	50
51	Origin of the Dendritic Effect in Multivalent Enzyme-Like Catalysts. Journal of the American Chemical Society, 2008, 130, 5699-5709.	13.7	50
52	Fuelâ€Selective Transient Activation of Nanosystems for Signal Generation. Angewandte Chemie - International Edition, 2018, 57, 1611-1615.	13.8	50
53	Exploiting Neighboringâ€Group Interactions for the Self election of a Catalytic Unit. Angewandte Chemie - International Edition, 2008, 47, 2475-2479.	13.8	49
54	Factors affecting T cell responses induced by fully synthetic glyco-gold-nanoparticles. Nanoscale, 2013, 5, 390-400.	5.6	48

#	Article	IF	CITATIONS
55	Functional micellar catalysis. Part 8. Catalysis of the hydrolysis of p-nitrophenyl picolinate by metal-chelating micelles containing copper(II) or zinc(II). Journal of the Chemical Society Perkin Transactions II, 1986, , 233.	0.9	46
56	Mimicking Enzymes: The Quest for Powerful Catalysts from Simple Molecules to Nanozymes. ACS Catalysis, 2021, 11, 11501-11509.	11.2	45
57	Lanthanide-Based NMR: A Tool To Investigate Component Distribution in Mixed-Monolayer-Protected Nanoparticles. Journal of the American Chemical Society, 2012, 134, 7200-7203.	13.7	44
58	Solvent Polarity Controls the Helical Conformation of Short Peptides Rich in Cα-Tetrasubstituted Amino Acids. Chemistry - A European Journal, 2007, 13, 407-416.	3.3	43
59	Leaving group effect in the cleavage of picolinate esters catalyzed by hydroxy-functionalized metallomicelles. Journal of Organic Chemistry, 1994, 59, 18-24.	3.2	41
60	Amphiphilic Copper(II) Complexes Modeled after the Metal-Complexation Subunit of Bleomycin Antibioticsâ€. Langmuir, 1998, 14, 1646-1655.	3.5	40
61	An azacrown-functionalized peptide as a metal ion based catalyst for the cleavage of a RNA-model substrate. Biopolymers, 2000, 55, 496-501.	2.4	40
62	Role of Secondary Structure in the Asymmetric Acylation Reaction Catalyzed by Peptides Based on Chiral Cα-Tetrasubstituted α-Amino Acids. Journal of Organic Chemistry, 2004, 69, 3849-3856.	3.2	39
63	Insights on Nuclease Mechanism: The Role of Proximal Ammonium Group on Phosphate Esters Cleavage. Journal of the American Chemical Society, 2009, 131, 11278-11279.	13.7	39
64	Hydrolytic Nanozymes. European Journal of Organic Chemistry, 2020, 2020, 5044-5055.	2.4	36
65	Comparative Reactivities of Phosphotriesters toward Iodosocarboxylates in Cationic Micelles. Langmuir, 1996, 12, 2200-2206.	3.5	35
66	Synthesis and isolation of stable thiirenium salts. Tetrahedron Letters, 1977, 18, 911-912.	1.4	32
67	Metal catalysis in oxidation by peroxides. Part II. Kinetics and mechanism of molybdenum-catalyzed oxidation of sulphides and alkenes with hydrogen peroxide. Journal of Molecular Catalysis, 1981, 11, 107-118.	1.2	32
68	Metal Ion Modulation of Membrane Permeability Induced by a Polypetide Template. Journal of the American Chemical Society, 1996, 118, 2505-2506.	13.7	32
69	Chiral Lipophilic Ligands. 3. Control of Enantioselectivity in Copper(II)-Catalyzed Cleavage of α-Amino Acid Esters by Aggregate Morphology. Langmuir, 1996, 12, 2956-2960.	3.5	32
70	Cooperative nanosystems. Journal of Peptide Science, 2008, 14, 174-183.	1.4	32
71	Aggregate structure and ligand location strongly influence copper(II) binding ability of cationic metallosurfactants. Journal of Organic Chemistry, 1989, 54, 5988-5991.	3.2	30
72	Chiral lipophilic ligands. 2. Cu(II)-Mediated transport of α-amino acids across a bulk chloroform membrane. Tetrahedron, 1995, 51, 217-230.	1.9	30

#	Article	IF	CITATIONS
73	Zn2+-Regulated Self-Sorting and Mixing of Phosphates and Carboxylates on the Surface of Functionalized Gold Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 2104-2109.	13.8	30
74	Fuel‣elective Transient Activation of Nanosystems for Signal Generation. Angewandte Chemie, 2018, 130, 1627-1631.	2.0	30
75	Multivalent recognition of bis- and tris-Zn-porphyrins by N-methylimidazole functionalized gold nanoparticles. Chemical Communications, 2003, , 1004-1005.	4.1	29
76	Zinc(II) as an Allosteric Regulator of Liposomal Membrane Permeability Induced by Synthetic Template-Assembled Tripodal Polypeptides. Chemistry - A European Journal, 2002, 8, 2753.	3.3	28
77	Hydrolytic cleavage of p-nitrophenyl alkanoates in aqueous solutions of cyclodextrins. Journal of the Chemical Society Perkin Transactions II, 1985, , 367.	0.9	27
78	A new ligand α-amino acid: (S)-2-amino-3-[1-(1,4,7-triazacyclononane)]propanoic acid. Tetrahedron Letters, 1998, 39, 7159-7162.	1.4	27
79	Cu(II) mediated selective transport of α-amino acids across a bulk liquid membrane using a chiral lipophilic ligand as a carrier. Tetrahedron Letters, 1988, 29, 4967-4970.	1.4	26
80	Metal-driven self assembly of C3 symmetry molecular cages. Chemical Communications, 2000, , 1087-1088.	4.1	26
81	Copper(II) complexation by micelle-solubilized long-chain complexing agents: Unusually slow reaction rates. Polyhedron, 1991, 10, 1791-1798.	2.2	25
82	Duality of Mechanism in the Tetramethylfluoroformamidinium Hexafluorophosphate-Mediated Synthesis ofN-Benzyloxycarbonylamino Acid Fluorides. Journal of Organic Chemistry, 2001, 66, 5905-5910.	3.2	25
83	Stereoselective Iodocyclization of (S)-Allylalanine Derivatives: γ-Lactone vs Cyclic Carbamate Formation. Organic Letters, 2007, 9, 2365-2368.	4.6	25
84	Resin-supported catalytic dendrimers as multivalent artificial metallonucleases. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3816-3820.	2.2	25
85	Reversible Chirality Control in Peptide-Functionalized Gold Nanoparticles. ACS Nano, 2013, 7, 9933-9939.	14.6	25
86	Binding and Uptake into Human Hepatocellular Carcinoma Cells of Peptide-Functionalized Gold Nanoparticles. Bioconjugate Chemistry, 2017, 28, 222-229.	3.6	25
87	A Gold Nanoparticle Nanonuclease Relying on a Zn(II) Mononuclear Complex. Angewandte Chemie - International Edition, 2021, 60, 1423-1432.	13.8	25
88	Catalysis on gold-nanoparticle-passivating monolayers. Current Opinion in Colloid and Interface Science, 2013, 18, 61-69.	7.4	24
89	Metal catalysis in oxidation by peroxides. Part 10. On the nature of the peroxovanadium(V) species in non-aqueous solvents. Journal of Molecular Catalysis, 1980, 9, 323-334.	1.2	23
90	Micellar nickel(II)-2-pyridineketoxime complexes as powerful catalysts of the cleavage of carboxylic acid esters in weakly acidic conditions. Journal of Molecular Catalysis A, 1996, 104, L201-L204.	4.8	23

#	Article	IF	CITATIONS
91	Title is missing!. Angewandte Chemie, 2003, 115, 3510-3514.	2.0	23
92	A water-soluble tweezers-like metalloreceptor: binding and selective catalytic properties. Journal of the Chemical Society Chemical Communications, 1991, , 449.	2.0	22
93	Phase-Transfer-Catalyzed Reactions ofa-Haloalmides: Synthesis ofa-Lactams. Synthesis, 1982, 1982, 586-587.	2.3	21
94	Surface-specific cleavage of a cationic carbonate-functionalized vesicular surfactant. Journal of the American Chemical Society, 1987, 109, 5740-5744.	13.7	21
95	Micellization triggers pseudo-intramolecular transacylation in Cu2+ complexes of hydrolytic metallomicelles Tetrahedron Letters, 1990, 31, 4791-4794.	1.4	21
96	Metal-Ion-Binding Peptides: From Catalysis to Protein Tagging. Angewandte Chemie - International Edition, 2003, 42, 4572-4575.	13.8	21
97	Ti(IV)/trialkanolamine catalytic polymeric membranes: Preparation, characterization, and use in oxygen transfer reactions. Journal of Catalysis, 2006, 238, 221-231.	6.2	21
98	Lanthanide cleavage of phosphodiester liposomes. Journal of the Chemical Society Chemical Communications, 1995, , 1627.	2.0	20
99	Efficient and Highly Selective Copper(II) Transport across a Bulk Liquid Chloroform Membrane Mediated by Lipophilic Dipeptides. Journal of Organic Chemistry, 1997, 62, 5592-5599.	3.2	20
100	Chiral lipophilic ligands. 5. Enantioselective ester cleavage of α-amino esters by Cu(II) complexes of chiral diamino alcohols in aqueous sufactants solutions. Tetrahedron, 1997, 53, 357-368.	1.9	20
101	Control of Permeation of Lanthanide Ions Across Phosphate-Functionalized Liposomal Membranes. Journal of the American Chemical Society, 1998, 120, 1179-1185.	13.7	20
102	An artificial ionophore based on a polyhydroxylated steroid dimer. Chemical Communications, 2002, , 3066-3067.	4.1	20
103	Limitations of the "tethering―strategy for the detection of a weak noncovalent interaction. Chemical Communications, 2007, , 1340-1342.	4.1	20
104	Real-time monitoring of a dynamic molecular system using 1H-13C HSQC NMR spectroscopy with an optimized 13C window. Chemical Communications, 2008, , 3034.	4.1	20
105	On the Metal-Aided Catalytic Mechanism for Phosphodiester Bond Cleavage Performed by Nanozymes. ACS Catalysis, 2021, 11, 8736-8748.	11.2	20
106	Multivalent Cooperative Catalysts. Current Organic Chemistry, 2009, 13, 1050-1064.	1.6	20
107	Cyclocondensations of DMF with α-haloamides, an aziridinone, or a Δ2-1,2,3-triazolin-5-one. Tetrahedron Letters, 1983, 24, 4473-4476.	1.4	19
108	Chemistry of an acyloxyiodinane, the intermediate in iodosobenzoate catalyzed cleavage of active esters. Tetrahedron Letters, 1987, 28, 251-254.	1.4	19

#	Article	IF	CITATIONS
109	Highly enantioselective cleavage of α-amino acid p-nitrophenyl esters by chiral metallomicelles. Journal of the Chemical Society Chemical Communications, 1988, , 716-718.	2.0	19
110	Acceleration ofp-Nitrophenyl Ester Cleavage by Zn(II)-Organized Molecular Receptors. Journal of Organic Chemistry, 1997, 62, 7621-7628.	3.2	19
111	Host–Guest Allosteric Control of an Artificial Phosphatase. Journal of the American Chemical Society, 2020, 142, 6837-6841.	13.7	19
112	Ti(IV)-based catalytic membranes for efficient and selective oxidation of secondary amines. Tetrahedron Letters, 2004, 45, 7515-7518.	1.4	18
113	Indirect Optical Analysis of a Dynamic Chemical System. Angewandte Chemie - International Edition, 2009, 48, 4546-4550.	13.8	18
114	An imidazole-functionalized phosphatidylcholine derivative: nucleophilic vesicles with adjustable reactivity. Journal of the American Chemical Society, 1987, 109, 6209-6210.	13.7	17
115	Copper(II) Complexation by Hydrophobic Single- and Double-Alkyl Chain Ligands Solubilized in Ammonium Surfactant Vesicles. Langmuir, 1997, 13, 5539-5543.	3.5	17
116	Cα-Tetrasubstituted Amino Acid Based Peptides in Asymmetric Catalysis. Biopolymers, 2006, 84, 97-104.	2.4	17
117	Hydrolytic cleavage of nerve agent simulants by gold nanozymes. Journal of Hazardous Materials, 2021, 415, 125644.	12.4	16
118	Selective reduction of cyclic conjugate enones with sodium borohydride in the presence of cyclodextrins. Journal of Organic Chemistry, 1986, 51, 1769-1773.	3.2	15
119	Self-Assembled Monolayers of Cu(II) Metallosurfactants on GC and HOPG. Langmuir, 1996, 12, 3695-3701.	3.5	15
120	Zn2+-Regulated Self-Sorting and Mixing of Phosphates and Carboxylates on the Surface of Functionalized Gold Nanoparticles. Angewandte Chemie, 2014, 126, 2136-2141.	2.0	15
121	Synthesis of Sterically Hindered α-Aminocarboxamides from α-Bromocarboxamides. Synthesis, 1982, 1982, 1092-1094.	2.3	14
122	Reactivity and stereoselectivity in the cleavage of complexes of activated enantiomeric substrates with cyclodextrins Tetrahedron Letters, 1983, 24, 5541-5542.	1.4	14
123	The reactivity of a surfactant-bound micellar phosphotriester. Tetrahedron Letters, 1994, 35, 4927-4930.	1.4	14
124	A zinc(II)-organized molecular receptor as a catalyst for the cleavage of amino acid esters. Journal of the Chemical Society Chemical Communications, 1995, , 1163.	2.0	14
125	Factors Influencing the Activity of Nanozymes in the Cleavage of an RNA Model Substrate. Molecules, 2019, 24, 2814.	3.8	14
126	A hydrolytic reporter of copper(II) availability in artificial liposomes. Journal of Organic Chemistry, 1993, 58, 3025-3029.	3.2	13

#	Article	IF	CITATIONS
127	Metal ions co-operativity in the catalysis of the hydrolysis of a Î ² -amino ester by a macrocyclic dinuclear Cu(II) complex. Tetrahedron, 1995, 51, 527-538.	1.9	13
128	DNA Phosphodiester Bond Hydrolysis Mediated by Cu(II) and Zn(II) Complexes of 1,3,5,-Triamino-cyclohexane Derivatives. Nucleosides, Nucleotides and Nucleic Acids, 2000, 19, 1265-1271.	1.1	13
129	Allosteric Regulation of an HIV-1 Protease Inhibitor by ZnII Ions. Angewandte Chemie - International Edition, 2001, 40, 3899-3902.	13.8	13
130	Gold nanoparticles protected with triethyleneglycol-Functionalized thiolates: acid-Induced clustering of the aggregates and solvent dependent optical properties. Journal of Supramolecular Chemistry, 2002, 2, 305-310.	0.4	13
131	C2-symmetrical sterol–polyether conjugates as highly efficient synthetic ionophores. Tetrahedron Letters, 2003, 44, 6121-6124.	1.4	13
132	Gold nanoparticles crosslinking by peptides and amino acids: A tool for the colorimetric identification of amino acids. Biopolymers, 2018, 109, e23111.	2.4	13
133	Influence of Aggregation on Redox Potentials of Amphiphilic Cu(II) Complexes Modeled after Bleomycin Antibiotics. Langmuir, 1996, 12, 5188-5194.	3.5	12
134	An experimental and theoretical study of the mechanism of cleavage of an RNA-model phosphate diester by mononuclear Zn(II) complexes. Supramolecular Chemistry, 2013, 25, 665-671.	1.2	12
135	Supramolecular metallocatalysts for the cleavage of amino acid esters. Journal of Physical Organic Chemistry, 1992, 5, 619-627.	1.9	11
136	Ln(III)-Catalyzed Cleavage of Phosphate-Functionalized Synthetic Lipids:Â Real Time Monitoring of Vesicle Decapsulationâ€. Langmuir, 2000, 16, 203-209.	3.5	11
137	Poly(ethylene glycol)-supported copper(II) triazacyclononane: an efficient, recoverable, and recyclable catalyst for the cleavage of a phosphodiester. Tetrahedron Letters, 2003, 44, 535-538.	1.4	11
138	Distance between Metal Centres Affects Catalytic Efficiency of Dinuclear Co ^{III} Complexes in the Hydrolysis of a Phosphate Diester. European Journal of Organic Chemistry, 2018, 2018, 5375-5381.	2.4	11
139	Copper(II) complexation by 6-(alkylamino)methyl-2-hydroxymethylpyridines with varying alkyl chain length in aqueous solutions. Kinetics and thermodynamics. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 209.	1.7	10
140	13C-isotope labelling for the facilitated NMR analysis of a complex dynamic chemical system. Chemical Communications, 2011, 47, 12476.	4.1	10
141	Light-Triggered Thiol-Exchange on Gold Nanoparticles at Low Micromolar Concentrations in Water. Langmuir, 2014, 30, 13831-13836.	3.5	10
142	Multifunctional, CD44v6-Targeted ORMOSIL Nanoparticles Enhance Drugs Toxicity in Cancer Cells. Nanomaterials, 2020, 10, 298.	4.1	10
143	Base-promoted reactions of $\hat{i}\pm$ -halogeno-alkylanilides. Journal of the Chemical Society Perkin Transactions 1, 1982, , 2969-2972.	0.9	9
144	Kinetic Amplification of the Enantioselective Cleavage of α-Amino Acid Esters by Metallomicelles. Langmuir, 1998, 14, 975-978.	3.5	9

#	Article	IF	CITATIONS
145	Selective phosphatidylethanolamine translocation across vesicle membranes using synthetic translocases. Chemical Communications, 2002, , 260-261.	4.1	9
146	Deracemization and the first CD spectrum of a 310-helical peptide made of achiral α-amino-isobutyric acid residues in a chiral membrane mimetic environment. Chemical Communications, 2013, 49, 10133.	4.1	9
147	Glucosamine Phosphate Induces AuNPs Aggregation and Fusion into Easily Functionalizable Nanowires. Nanomaterials, 2019, 9, 622.	4.1	9
148	Rate and enantioselectivity with complexes of activated substrates and simply modified cyclodextrins. Journal of the Chemical Society Perkin Transactions II, 1987, , 1121.	0.9	8
149	Enantioselectivity effects in the hydrolytic cleavage of activated substrates with α- and β-cyclodextrins. Journal of the Chemical Society Perkin Transactions II, 1987, , 193-196.	0.9	8
150	A convenient preparation of 1,2-diacylglycerols; -iodobenzoyl as a protecting group. Tetrahedron Letters, 1987, 28, 5005-5008.	1.4	8
151	ASYMMETRIC OXIDATION OF SULFIDES IN THE PRESENCE OF CYCLODEXTRINS: EFFECT OF THE PRECOMPLEXATION OF THE REACTANTS. Phosphorous and Sulfur and the Related Elements, 1988, 35, 211-213.	0.2	8
152	The Advantage of Covalent Capture in the Combinatorial Screening of a Dynamic Library for the Detection of Weak Interactions. European Journal of Organic Chemistry, 2010, 2010, 3858-3866.	2.4	8
153	Catalysis of Transesterification Reactions by a Self-Assembled Nanosystem. International Journal of Molecular Sciences, 2013, 14, 2011-2021.	4.1	8
154	The Biotinâ \in "Avidin Interaction in Biotinylated Gold Nanoparticles and the Modulation of Their Aggregation. Nanomaterials, 2021, 11, 1559.	4.1	8
155	The Role of Hydroxamic Acids in the Retention of Fission Products in TBP Diluents. A Quantitative Study in a Model System. Separation Science and Technology, 1982, 17, 1451-1468.	2.5	7
156	Base-promoted reactions of β-enaminones with 2-bromo-2-methylpropanamides. Formation of 2-ketonyloxazolidin-4-ones and cyclohexanespiro-oxazolidin-4-ones. Journal of the Chemical Society Perkin Transactions 1, 1984, , 781-784.	0.9	7
157	A water soluble multisite receptor: Synthesis, Cu(II) and organic molecule complexation. Journal of Inclusion Phenomena, 1988, 6, 175-181.	0.6	7
158	A micellar model of bleomycin antibiotics. Tetrahedron Letters, 1989, 30, 2987-2990.	1.4	7
159	Efficient and selective transport of ï‰-amino acids across a bulk chloroform membrane by a macrocyclic dicopper(II) complex. Tetrahedron Letters, 2004, 45, 1643-1646.	1.4	7
160	Fully symmetrical functionalization of multivalent scaffold molecules on solid support. Tetrahedron, 2006, 62, 11670-11674.	1.9	7
161	Determination of the activity of heterofunctionalized catalysts from mixtures. New Journal of Chemistry, 2006, 30, 1493.	2.8	7
162	The Zn(II)-1,4,7-Trimethyl-1,4,7-Triazacyclononane Complex: A Monometallic Catalyst Active in Two Protonation States. Frontiers in Chemistry, 2019, 7, 469.	3.6	7

#	Article	IF	CITATIONS
163	The Mechanism of Cleavage of RNA Phosphodiesters by a Gold Nanoparticle Nanozyme. Chemistry - A European Journal, 2021, 27, 8143-8148.	3.3	7
164	Vicinal multifunctional compounds. Tautomerism and isomerism in the condensation products of 2-hydroxyimino-3-oxobutanal or 3-hydroxyiminopentane-2,4-dione with benzylamines. Journal of the Chemical Society Perkin Transactions 1, 1982, , 1013.	0.9	6
165	Induced circular dichroism of conjugated cyclohexenones included in native or modified cyclomaltooligosaccharides. Carbohydrate Research, 1986, 147, 205-209.	2.3	6
166	Unimodal binding of azulene with?-cyclodextrin: An intermolecular nuclear overhauser effect study. Journal of Inclusion Phenomena, 1986, 4, 291-294.	0.6	6
167	Kinetics and Thermodynamics of Binding of a Model Tripeptide to Teicoplanin and Analogous Semisynthetic Antibiotics. Journal of Organic Chemistry, 1996, 61, 6268-6272.	3.2	6
168	Biological and Biomimetic Applications of Nanoparticles. Nanostructure Science and Technology, 2004, , 251-282.	0.1	6
169	A multivalent HIV-1 fusion inhibitor based on small helical foldamers. Tetrahedron, 2012, 68, 4346-4352.	1.9	6
170	A new ligand-functionalized?-cyclodextrin as a esterolytic reagent at neutral pH. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1992, 14, 205-215.	1.6	5
171	Polymerization- and Solvent-Triggered Cooperativity Between Copper(II) lons in the Catalysis of the Hydrolysis of Amino Esters by Pyridine-Based Ligands. European Journal of Organic Chemistry, 1998, 1998, 1143-1153.	2.4	5
172	Development of an Enzyme Mimic Using Selfâ€Selection. Israel Journal of Chemistry, 2013, 53, 122-126.	2.3	5
173	Ligand Surfactants: Aggregation, Cations Binding and Transport, and Catalytic Properties. , 1991, , 349-362.		5
174	Chemistry of 2-bromo-2-methylpropanamides. Synthesis and solvolytic behaviour of oxazolidinones and spiro-oxazolidinones. Journal of the Chemical Society Perkin Transactions 1, 1988, , 43.	0.9	4
175	EXPEDITIOUS ROUTES TO SYMMETRICALLY AND ASYMMETRICALLY SUBSTITUTED PYRIDINES FROM CHELIDAMIC ACID. Organic Preparations and Procedures International, 1991, 23, 204-206.	1.3	4
176	The Effect of Aggregation on the Binding of a Derivative of the Glycopeptide Antibiotic Teicoplanin to a Model Tripeptide. Journal of Organic Chemistry, 1994, 59, 5080-5083.	3.2	4
177	Functionalization of Tripodal Scaffold Molecules on Solid Support. European Journal of Organic Chemistry, 2008, 2008, 3559-3568.	2.4	4
178	Helical peptide–polyamine and –polyether conjugates as synthetic ionophores. Bioorganic and Medicinal Chemistry, 2015, 23, 7386-7393.	3.0	4
179	A Gold Nanoparticle Nanonuclease Relying on a Zn(II) Mononuclear Complex. Angewandte Chemie, 2021, 133, 1443-1452.	2.0	4
180	Reactions of amide anions with α-bromo-amides. Journal of the Chemical Society Chemical Communications, 1981, , 416-417.	2.0	3

#	Article	IF	CITATIONS
181	Multivalent Catalysts for the Cleavage of Nucleic Acids and their Models. Nucleic Acids Symposium Series, 2007, 51, 67-68.	0.3	3
182	Thread and cut. Nature Chemistry, 2013, 5, 899-900.	13.6	3
183	Stereoselective hydrolysis of nitrophenyl carbonates of menthols and borneol in the presence of α- and β- cyclodextrins. Journal of Molecular Catalysis, 1986, 36, 293-296.	1.2	2
184	Control of Reactivity in Aggregates of Amphiphilic Molecules. Perspectives in Supramolecular Chemistry, 2007, , 101-153.	0.1	2
185	Oligopeptide Helical Conformations Control Gold Nanoparticle Crossâ€Linking. Chemistry - A European Journal, 2019, 25, 11758-11764.	3.3	2
186	DNA and RNA-cleaving Pseudo-peptides. , 2005, , 223-240.		1
187	Artificial (Pseudo)peptides for Molecular Recognition and Catalysis. , 2005, , 1-43.		1
188	Supramolecular Functions of Designed Transition Metal Ion Complexes. , 2000, , 67-82.		1
189	Allosteric Regulation of an HIV-1 Protease Inhibitor by Zn(II) Ions This work was funded by MURST (COFIN2000-MM03194891). We thank Prof. P. Tecilla (U. Trieste) for valuable comments Angewandte Chemie - International Edition, 2001, 40, 3899-3902.	13.8	1
190	Metal-Ion-Binding Peptides: From Catalysis to Protein Tagging ChemInform, 2003, 34, no.	0.0	0
191	Biological Models and Their Characteristics. , 2004, , 101-109.		0
192	Oligopeptide Foldamers: From Structure to Function. ChemInform, 2005, 36, no.	0.0	0
193	Artificial Metallonucleases ChemInform, 2005, 36, no.	0.0	0
194	Nanozymes: Functional Nanoparticle-Based Catalysts. ChemInform, 2006, 37, no.	0.0	0
195	Editorial: Recognition and reactivity at interfaces. Organic and Biomolecular Chemistry, 2015, 13, 3508-3509.	2.8	0
196	Special Issue "Synthesis and Applications of Functionalized Gold Nanosystems― Nanomaterials, 2019, 9, 1046.	4.1	0
197	Synthesis, Interfaces, and Nanostructures: A Section of Nanomaterials (ISSN 2079-4991). Nanomaterials, 2021, 11, 2850.	4.1	0
198	Phosphate Diesters and DNA Cleavage by Gold Nanozymes. Materials Proceedings, 2021, 4, 70.	0.2	0

#	Article	IF	CITATIONS
199	Phosphate Triesters Cleavage by Gold Nanozymes. Materials Proceedings, 2020, 4, .	0.2	0