
Nicholas D Ward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/562177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Severe declines in hydraulic capacity and associated carbon starvation drive mortality in seawater exposed Sitka-spruce (Picea sitchensis) trees. Environmental Research Communications, 2022, 4, 035005.	0.9	4
2	Methane Plume Emissions Associated With Puget Sound Faults in the Cascadia Forearc. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	1
3	The influence of increasing atmospheric <scp>CO₂</scp> , temperature, and vapor pressure deficit on seawaterâ€induced tree mortality. New Phytologist, 2022, 235, 1767-1779.	3.5	12
4	Processes and mechanisms of coastal woodyâ€plant mortality. Global Change Biology, 2022, 28, 5881-5900.	4.2	22
5	The black carbon cycle and its role in the Earth system. Nature Reviews Earth & Environment, 2022, 3, 516-532.	12.2	52
6	Small streams dominate US tidal reaches and will be disproportionately impacted by sea-level rise. Science of the Total Environment, 2021, 753, 141944.	3.9	7
7	Seasonal and Daily Variation of Hydrodynamic Conditions in the Amazon River Mouth: Influence of Discharge and Tide on Flow Velocity. Journal of Coastal Research, 2021, 37, .	0.1	4
8	Declining carbohydrate content of Sitka-spruce treesdying from seawater exposure. Plant Physiology, 2021, 185, 1682-1696.	2.3	10
9	CO2 partial pressure and fluxes in the Amazon River plume using in situ and remote sensing data. Continental Shelf Research, 2021, 215, 104348.	0.9	14
10	Coastal Forest Seawater Exposure Increases Stem Methane Concentration. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005915.	1.3	8
11	Antecedent conditions determine the biogeochemical response of coastal soils to seawater exposure. Soil Biology and Biochemistry, 2021, 153, 108104.	4.2	7
12	Biogeochemical control points of connectivity between a tidal creek and its floodplain. Limnology and Oceanography Letters, 2021, 6, 134-142.	1.6	11
13	Low Diffusive Methane Emissions From the Main Channel of a Large Amazonian Run-of-the-River Reservoir Attributed to High Methane Oxidation. Frontiers in Environmental Science, 2021, 9, .	1.5	6
14	Changes in carbon and nitrogen metabolism during seawater-induced mortality of Picea sitchensis trees. Tree Physiology, 2021, 41, 2326-2340.	1.4	8
15	Seasonal Changes in the Drivers of Water Physico-Chemistry Variability of a Small Freshwater Tidal River. Frontiers in Marine Science, 2021, 8, .	1.2	2
16	Seawater exposure causes hydraulic damage in dying Sitka-spruce trees. Plant Physiology, 2021, 187, 873-885.	2.3	10
17	Optical Classification of Lower Amazon Waters Based on In Situ Data and Sentinel-3 Ocean and Land Color Instrument Imagery. Remote Sensing, 2021, 13, 3057.	1.8	3

18 Tree growth, transpiration, and water-use efficiency between shoreline and upland red maple (Acer) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

NICHOLAS D WARD

#	Article	IF	CITATIONS
19	Representing the function and sensitivity of coastal interfaces in Earth system models. Nature Communications, 2020, 11, 2458.	5.8	153
20	Floodplain Inundation and Salinization From a Recently Restored Firstâ€Order Tidal Stream. Water Resources Research, 2020, 56, e2019WR026850.	1.7	15
21	Environmental Impacts of Dam Reservoir Filling in the East Amazon. Frontiers in Water, 2020, 2, .	1.0	17
22	Metabolic Profiling Reveals Biochemical Pathways Responsible for Eelgrass Response to Elevated CO2 and Temperature. Scientific Reports, 2020, 10, 4693.	1.6	12
23	Impacts of Hurricane Disturbance on Water Quality across the Aquatic Continuum of a Blackwater River to Estuary Complex. Journal of Marine Science and Engineering, 2020, 8, 412.	1.2	11
24	Pathways for Methane Emissions and Oxidation that Influence the Net Carbon Balance of a Subtropical Cypress Swamp. Frontiers in Earth Science, 2020, 8, .	0.8	9
25	Ecohydrologic processes and soil thickness feedbacks control limestone-weathering rates in a karst landscape. Chemical Geology, 2019, 527, 118774.	1.4	20
26	Mass balance implies Holocene development of a low-relief karst patterned landscape. Chemical Geology, 2019, 527, 118782.	1.4	13
27	Carbon dioxide (CO ₂) concentrations and emission in the newly constructed Belo Monte hydropower complex in the Xingu River, Amazonia. Biogeosciences, 2019, 16, 3527-3542.	1.3	13
28	Mechanisms of Organic Matter Export in Estuaries with Contrasting Carbon Sources. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3168-3188.	1.3	15
29	Spatial gradients in the characteristics of soil-carbon fractions are associated with abiotic features but not microbial communities. Biogeosciences, 2019, 16, 3911-3928.	1.3	19
30	Marked isotopic variability within and between the Amazon River and marine dissolved black carbon pools. Nature Communications, 2019, 10, 4018.	5.8	47
31	Initiation and Development of Wetlands in Southern Florida Karst Landscape Associated With Accumulation of Organic Matter and Vegetation Evolution. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1604-1617.	1.3	12
32	Longitudinal Gradients in Tree Stem Greenhouse Gas Concentrations Across Six Pacific Northwest Coastal Forests. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1401-1412.	1.3	16
33	Constrained tree growth and gas exchange of seawaterâ€exposed forests in the Pacific Northwest, USA. Journal of Ecology, 2019, 107, 2541-2552.	1.9	21
34	Enhanced Aquatic Respiration Associated With Mixing of Clearwater Tributary and Turbid Amazon River Waters. Frontiers in Earth Science, 2019, 7, .	0.8	17
35	Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sensing of Environment, 2019, 224, 104-118.	4.6	195
36	Editorial: The Role of Priming in Terrestrial and Aquatic Ecosystems. Frontiers in Earth Science, 2019, 7, .	0.8	6

NICHOLAS D WARD

#	Article	IF	CITATIONS
37	Soil Respiration Variability and Correlation Across a Wide Range of Temporal Scales. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3672-3683.	1.3	9
38	Marine microbial community responses related to wetland carbon mobilization in the coastal zone. Limnology and Oceanography Letters, 2019, 4, 25-33.	1.6	21
39	INSIGHTS ON INUNDATION AND HYDROBIOGEOCHEMISTRY IN A FIRST-ORDER TIDAL STREAM FLOODPLAIN. , 2019, , .		Ο
40	Velocityâ€ e mplified microbial respiration rates in the lower Amazon River. Limnology and Oceanography Letters, 2018, 3, 265-274.	1.6	31
41	Lipoxygenase-induced autoxidative degradation of terrestrial particulate organic matter in estuaries: A widespread process enhanced at high and low latitude. Organic Geochemistry, 2018, 115, 78-92.	0.9	22
42	Using CDOM optical properties for estimating DOC concentrations and pCO ₂ in the Lower Amazon River. Optics Express, 2018, 26, A657.	1.7	35
43	Seasonal Trends in Surface pCO2 and Air-Sea CO2 Fluxes in Apalachicola Bay, Florida, From VIIRS Ocean Color. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2466-2484.	1.3	9
44	The Amazon Riverâ \in TM s Ecosystem: Where Land Meets the Sea. Eos, 2018, 99, .	0.1	6
45	Assessing chromophoric dissolved organic matter (CDOM) distribution, stocks, and fluxes in Apalachicola Bay using combined field, VIIRS ocean color, and model observations. Remote Sensing of Environment, 2017, 191, 359-372.	4.6	63
46	The experimental flow to the Colorado River delta: Effects on carbon mobilization in a dry watercourse. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 607-627.	1.3	9
47	Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon. MSphere, 2017, 2, .	1.3	10
48	Impact of Wetland Decline on Decreasing Dissolved Organic Carbon Concentrations along the Mississippi River Continuum. Frontiers in Marine Science, 2017, 3, .	1.2	21
49	Where Carbon Goes When Water Flows: Carbon Cycling across the Aquatic Continuum. Frontiers in Marine Science, 2017, 4, .	1.2	197
50	Evaluation of Primary Production in the Lower Amazon River Based on a Dissolved Oxygen Stable Isotopic Mass Balance. Frontiers in Marine Science, 2017, 4, .	1.2	15
51	Carbon Dioxide Emissions along the Lower Amazon River. Frontiers in Marine Science, 2017, 4, .	1.2	100
52	Editorial: Integrative Research on Organic Matter Cycling across Aquatic Gradients. Frontiers in Marine Science, 2017, 4, .	1.2	2
53	Patterns of Bacterial and Archaeal Gene Expression through the Lower Amazon River. Frontiers in Marine Science, 2017, 4, .	1.2	14
54	Bacterial Biogeography across the Amazon River-Ocean Continuum. Frontiers in Microbiology, 2017, 8, 882.	1.5	75

NICHOLAS D WARD

#	Article	IF	CITATIONS
55	Dissolved Organic and Inorganic Carbon Flow Paths in an Amazonian Transitional Forest. Frontiers in Marine Science, 2016, 3, .	1.2	17
56	Oxidative mitigation of aquatic methane emissions in large Amazonian rivers. Global Change Biology, 2016, 22, 1075-1085.	4.2	61
57	The reactivity of plantâ€derived organic matter and the potential importance of priming effects along the lower Amazon River. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1522-1539.	1.3	94
58	Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River. Biogeochemistry, 2016, 131, 281-302.	1.7	40
59	Positive priming of terrestrially derived dissolved organic matter in a freshwater microcosm system. Geophysical Research Letters, 2015, 42, 5460-5467.	1.5	100
60	Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean. Global Biogeochemical Cycles, 2015, 29, 677-690.	1.9	148
61	The compositional evolution of dissolved and particulate organic matter along the lower Amazon River—A"bidos to the ocean. Marine Chemistry, 2015, 177, 244-256.	0.9	73
62	Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum. Marine Chemistry, 2015, 177, 218-231.	0.9	206
63	Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011. Microbiome, 2015, 3, 39.	4.9	47
64	Degradation of terrestrially derived macromolecules in the Amazon River. Nature Geoscience, 2013, 6, 530-533.	5.4	300
65	Temporal variation in river nutrient and dissolved lignin phenol concentrations and the impact of storm events on nutrient loading to Hood Canal, Washington, USA. Biogeochemistry, 2012, 111, 629-645.	1.7	36