List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5621740/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Incremental dynamic analysis and fragility assessment of buildings founded on different soil types experiencing structural pounding during earthquakes. Engineering Structures, 2022, 252, 113118.	5.3	23
2	Evaluation of pounding effects between reinforced concrete frames subjected to far-field earthquakes in terms of damage index. Bulletin of Earthquake Engineering, 2022, 20, 1219-1245.	4.1	6
3	The rationalized pathway from field-induced slow magnetic relaxation in Co ^{II} –W ^{IV} chains to single-chain magnetism in isotopological Co ^{II} –W ^V analogues. Inorganic Chemistry Frontiers, 2022, 9, 1152-1170.	6.0	7
4	Analysis of pounding between adjacent buildings founded on different soil types. Soil Dynamics and Earthquake Engineering, 2022, 154, 107156.	3.8	18
5	Non-Linear Analysis of Structures Utilizing Load-Discretization of Stiffness Matrix Method with Coordinate Update. Applied Sciences (Switzerland), 2022, 12, 2394.	2.5	0
6	Seismic gap between buildings founded on different soil types experiencing pounding during earthquakes. Earthquake Spectra, 2022, 38, 2183-2206.	3.1	8
7	Development of fragility curves in adjacent steel moment-resisting frames considering pounding effects through improved wavelet-based refined damage-sensitive feature. Mechanical Systems and Signal Processing, 2022, 173, 109038.	8.0	24
8	The Effectiveness of Rubber Bumpers in Reducing the Effects of Earthquake-Induced Pounding between Base-Isolated Buildings. Applied Sciences (Switzerland), 2022, 12, 4971.	2.5	5
9	Investigating an Optimal Computational Strategy to Retrofit Buildings with Implementing Viscous Dampers. Lecture Notes in Computer Science, 2022, , 184-191.	1.3	7
10	Incremental Dynamic Analysis and Fragility Assessment of Buildings with Different Structural Arrangements Experiencing Earthquake-Induced Structural Pounding. Lecture Notes in Computer Science, 2022, , 117-124.	1.3	4
11	Seismic Pounding Between Bridge Segments: A State-of-the-Art Review. Archives of Computational Methods in Engineering, 2021, 28, 495-504.	10.2	48
12	Investigating the effects of structural pounding on the seismic performance of adjacent RC and steel MRFs. Bulletin of Earthquake Engineering, 2021, 19, 317-343.	4.1	45
13	SHC-active NIR-emissive molecular nanomagnets generated in layered neodymium(<scp>iii</scp>)–octacyanidometallate(<scp>iv</scp>) frameworks. Journal of Materials Chemistry C, 2021, 9, 10705-10717.	5.5	15
14	Application of discrete wavelet transform in seismic nonlinear analysis of soil–structure interaction problems. Earthquake Spectra, 2021, 37, 1980-2012.	3.1	28
15	Reversible Humidity-Driven Transformation of a Bimetallic {EuCo} Molecular Material: Structural, Sorption, and Photoluminescence Studies. Molecules, 2021, 26, 1102.	3.8	1
16	Effective Gap Size Index for Determination of Optimum Separation Distance Preventing Pounding between Buildings during Earthquakes. Applied Sciences (Switzerland), 2021, 11, 2322.	2.5	5
17	Extended Newmark method to assess stability of slope under bidirectional seismic loading. Soil Dynamics and Earthquake Engineering, 2021, 143, 106600.	3.8	11
18	Highly Dissipative Materials for Damage Protection against Earthquake-Induced Structural Pounding. Materials, 2021, 14, 3231.	2.9	7

#	Article	IF	CITATIONS
19	Mitigating the seismic pounding of multi-story buildings in series using linear and nonlinear fluid viscous dampers. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	3.8	10
20	Predicting the seismic collapse capacity of adjacent SMRFs retrofitted with fluid viscous dampers in pounding condition. Mechanical Systems and Signal Processing, 2021, 161, 107939.	8.0	40
21	Combined Experimental and Ab Initio Methods for Rationalization of Magneto-Luminescent Properties of Yb ^{III} Nanomagnets Embedded in Cyanido/Thiocyanidometallate-Based Crystals. Journal of Physical Chemistry Letters, 2021, 12, 10558-10566.	4.6	11
22	Predicting the peak structural displacement preventing pounding of buildings during earthquakes. Journal of Physics: Conference Series, 2021, 2070, 012010.	0.4	1
23	Experimental analysis of the behaviour of different types of joints in the steel structure model subjected to earthquake loading. Journal of Physics: Conference Series, 2021, 2070, 012227.	0.4	1
24	Determination of Peak Impact Force for Buildings Exposed to Structural Pounding during Earthquakes. Geosciences (Switzerland), 2020, 10, 18.	2.2	10
25	Probabilistic seismic assessment of RC box-girder highway bridges with unequal-height piers subjected to earthquake-induced pounding. Bulletin of Earthquake Engineering, 2020, 18, 1547-1578.	4.1	39
26	Modelling of heat and mass transfer through wooden buildings. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 2020, 173, 188-201.	0.4	1
27	Experimental and Numerical Study on Dynamics of Two Footbridges with Different Shapes of Girders. Applied Sciences (Switzerland), 2020, 10, 4505.	2.5	15
28	Experimental Study on the Effectiveness of Polyurethane Flexible Adhesive in Reduction of Structural Vibrations. Polymers, 2020, 12, 2364.	4.5	12
29	A Proposed Soft Computing Model for Ultimate Strength Estimation of FRP-Confined Concrete Cylinders. Applied Sciences (Switzerland), 2020, 10, 1769.	2.5	19
30	Improvement of Performance Level of Steel Moment-Resisting Frames Using Tuned Mass Damper System. Applied Sciences (Switzerland), 2020, 10, 3403.	2.5	34
31	An ANN-Based Approach for Prediction of Sufficient Seismic Gap between Adjacent Buildings Prone to Earthquake-Induced Pounding. Applied Sciences (Switzerland), 2020, 10, 3591.	2.5	6
32	Guestâ€Dependent Pressureâ€Induced Spin Crossover in Fe II 4 [M IV (CN) 8] 2 (M=Mo, W) Clusterâ€Based Material Showing Persistent Solventâ€Driven Structural Transformations. Chemistry - A European Journal, 2020, 26, 11187-11198.	3.3	12
33	Response of cylindrical steel tank under stochastically generated non-uniform earthquake excitation. AIP Conference Proceedings, 2020, , .	0.4	1
34	Study on Methods to Control Interstory Deflections. Geosciences (Switzerland), 2020, 10, 75.	2.2	10
35	Study on Polymer Elements for Mitigation of Earthquake-Induced Pounding Between Buildings in Complex Arrangements. Geotechnical, Geological and Earthquake Engineering, 2020, , 391-401.	0.2	1
36	A Proposed Machine Learning Model for Forecasting Impact of Traffic-Induced Vibrations on Buildings. Lecture Notes in Computer Science, 2020, , 444-451.	1.3	4

#	Article	IF	CITATIONS
37	Nonlinear numerical simulation of earthquake-induced pounding between timber frame buildings. AIP Conference Proceedings, 2020, , .	0.4	0
38	Dynamic analysis of temporary steel grandstand subjected to human-induced excitations due to jumping. AIP Conference Proceedings, 2020, , .	0.4	0
39	Modeling of wood frame structures with different insulation materials under damaging dynamic loading. AIP Conference Proceedings, 2020, , .	0.4	0
40	Letter to the Editor: Discussion on the Paper "State-of-the-Art of Research on Seismic Pounding Between Buildings with Aligned Slabs― Archives of Computational Methods in Engineering, 2019, 26, 531-532.	10.2	3
41	Near-infrared emissive Er(<scp>iii</scp>) and Yb(<scp>iii</scp>) molecular nanomagnets in metal–organic chains functionalized by octacyanidometallates(<scp>iv</scp>). Inorganic Chemistry Frontiers, 2019, 6, 2423-2434.	6.0	38
42	Effective Formula for Impact Damping Ratio for Simulation of Earthquake-induced Structural Pounding. Geosciences (Switzerland), 2019, 9, 347.	2.2	9
43	The Idea of Using Bayesian Networks in Forecasting Impact of Traffic-Induced Vibrations Transmitted through the Ground on Residential Buildings. Geosciences (Switzerland), 2019, 9, 339.	2.2	11
44	Influence of soil–structure interaction on seismic pounding between steel frame buildings considering the effect of infill panels. Bulletin of Earthquake Engineering, 2019, 17, 6165-6202.	4.1	47
45	Seismic Response of High-Rise Buildings Equipped with Base Isolation and Non-Traditional Tuned Mass Dampers. Applied Sciences (Switzerland), 2019, 9, 1201.	2.5	38
46	Verification of Formulas for Periods of Adjacent Buildings Used to Assess Minimum Separation Gap Preventing Structural Pounding during Earthquakes. Advances in Civil Engineering, 2019, 2019, 1-8.	0.7	12
47	Seismic pounding between adjacent buildings: Identification of parameters, soil interaction issues and mitigation measures. Soil Dynamics and Earthquake Engineering, 2019, 121, 135-150.	3.8	78
48	Non-Linear Analysis of Inter-Story Pounding between Wood-Framed Buildings during Ground Motion. Geosciences (Switzerland), 2019, 9, 488.	2.2	8
49	Earthquake-Induced Pounding of Medium-to-High-Rise Base-Isolated Buildings. Applied Sciences (Switzerland), 2019, 9, 4681.	2.5	2
50	Experimental Study on Dynamics of Wooden House Wall Panels with Different Thermal Isolation. Applied Sciences (Switzerland), 2019, 9, 4387.	2.5	9
51	Study on 19th-century cast iron columns from the former financial office building in Kwidzyn. MATEC Web of Conferences, 2018, 219, 02011.	0.2	1
52	Comparative analysis of different numerical models of a steel radial gate. MATEC Web of Conferences, 2018, 219, 02008.	0.2	0
53	Polymeric Bearings as a new base isolation system suitable for mitigating machine-induced vibrations. MATEC Web of Conferences, 2018, 211, 17001.	0.2	1
54	The effectiveness of polymer adhesive in reduction of vibrations of structural members. MATEC Web of Conferences, 2018, 211, 14004.	0.2	1

#	Article	IF	CITATIONS
55	Corrigendum to "Seismic pounding behavior of multi-story buildings in series considering the effect of infill panels―[Eng. Struct. 144 (2017) 139–150]. Engineering Structures, 2018, 171, 933.	5.3	1
56	Advanced Hysteretic Model of a Prototype Seismic Isolation System Made of Polymeric Bearings. Applied Sciences (Switzerland), 2018, 8, 400.	2.5	19
57	Experimental study of the effect of vertical acceleration component on the slope stability. Journal of Measurements in Engineering, 2018, 6, 240-249.	0.6	2
58	Monotonic solutions of a higher-order neutral difference system. Discrete and Continuous Dynamical Systems - Series B, 2018, 23, 253-261.	0.9	1
59	Numerical Investigation on Dynamic Performance of a Multi-storey Steel Structure Model and Comparison with Experimental Results. Springer Proceedings in Mathematics and Statistics, 2018, , 105-113.	0.2	1
60	Analysis of temporary steel grandstand with different bracing systems exposed to crowd load. Journal of Measurements in Engineering, 2018, 6, 256-262.	0.6	2
61	Numerical Evaluation of Dynamic Response of a Steel Structure Model Under Various Seismic Excitations. Procedia Engineering, 2017, 172, 277-283.	1.2	6
62	Experimental and Numerical Analysis of an Aluminum Cantilevered Beam with Polymer Adhesive. Procedia Engineering, 2017, 172, 634-639.	1.2	7
63	Novel voltage stability assessment method based on reactive power reserve measurements. , 2017, , .		0
64	Seismic pounding behavior of multi-story buildings in series considering the effect of infill panels. Engineering Structures, 2017, 144, 139-150.	5.3	48
65	Preventing of earthquake-induced pounding between steel structures by using polymer elements – experimental study. Procedia Engineering, 2017, 199, 278-283.	1.2	25
66	Reversible Single-Crystal-to-Single-Crystal Transformation in Photomagnetic Cyanido-Bridged Cd ₄ M ₂ Octahedral Molecules. Inorganic Chemistry, 2017, 56, 12914-12919.	4.0	28
67	Investigation of behaviour of metal structures with polymer dampers under dynamic loads. Procedia Engineering, 2017, 199, 2832-2837.	1.2	5
68	The Processing Procedure for the Interpretation of Microseismic Signal Acquired from a Surface Array During Hydraulic Fracturing in Pomerania Region in Poland. Procedia Computer Science, 2017, 108, 1722-1730.	2.0	1
69	Modal Analysis of a Steel Radial Gate Exposed to Different Water Levels. Archives of Hydroengineering and Environmental Mechanics, 2017, 64, 37-47.	1.3	6
70	Damage-Involved Structural Pounding in Bridges under Seismic Excitation. Key Engineering Materials, 2017, 754, 309-312.	0.4	3
71	Timber Frame Houses with Different Insulation Materials - Seismic Analysis. , 2017, , .		0
72	Comparing the Effectiveness of ANNs and SVMs in Forecasting the Impact of Traffic-Induced Vibrations		3

on Building. , 2017, , .

#	Article	IF	CITATIONS
73	Experimental Study on Effectiveness of a Prototype Seismic Isolation System Made of Polymeric Bearings. Applied Sciences (Switzerland), 2017, 7, 808.	2.5	40
74	MATCHED FILTER APPROACH FOR MICROSEISMIC SIGNAL PROCESSING OF REAL DATA FROM EAST POMERANIA SHALE GAS. , 2017, , .		0
75	REVERSE MODELLING OF MICROSEISMIC WAVES PROPAGATION FOR THE INTERPRETATION OF THE DATA FROM HYDRAULIC FRACTURING MONITORING IN POLAND. , 2017, , .		0
76	MICROSEISMIC EVENT DETECTION USING DIFFERENT ALGORITHMS ON REAL DATA FROM PATCH ARRAY GEOPHONE GRID FROM EASTERN POMERANIA FRACTURING JOB. , 2017, , .		0
77	Modal analysis of a fish-belly flap type of steel water gate. , 2017, , 351-354.		0
78	Numerical Study on Pounding between Two Adjacent Buildings under Earthquake Excitation. Shock and Vibration, 2016, 2016, 1-9.	0.6	49
79	Review of the Usefulness of Various Rotational Seismometers with Laboratory Results of Fibre-Optic Ones Tested for Engineering Applications. Sensors, 2016, 16, 2161.	3.8	52
80	Linking of adjacent three-storey buildings for mitigation of structural pounding during earthquakes. Bulletin of Earthquake Engineering, 2016, 14, 3075-3097.	4.1	75
81	Mathematical Modelling of a Seismic Isolation System to Protect Structures during Damaging Earthquakes. Key Engineering Materials, 2016, 713, 220-223.	0.4	1
82	Problems of Collisions Between Adjacent Steel Structures under Earthquake Excitation / Problemy ZderzeÅ,, PomiÄ™dzy SÄ…siadujÄ…cymi Konstrukcjami Stalowymi Poddanymi Obciążeniom Sejsmicznym. C Environmental Engineering Reports, 2016, 20, 147-158.	Civ o.a nd	0
83	Control Rehabilitation Impact on Production Efficiency of Ammonia Synthesis Installation. Industrial & Engineering Chemistry Research, 2016, 55, 10366-10376.	3.7	17
84	Investigation on Damage-Involved Structural Response of Colliding Steel Structures during Ground Motions. Key Engineering Materials, 2016, 713, 26-29.	0.4	6
85	Earthquake-Induced Pounding Between Asymmetric Steel Buildings. Geotechnical, Geological and Earthquake Engineering, 2016, , 255-261.	0.2	4
86	Behaviour of Asymmetric Structure with Base Isolation Made of Polymeric Bearings. Geotechnical, Geological and Earthquake Engineering, 2016, , 333-341.	0.2	2
87	Experimental and numerical study on polymer element used for reduction of temporary steel grandstand vibrations. , 2016, , 215-222.		2
88	MODAL ANALYSIS OF REAL TIMBER FRAME HOUSES WITH DIFFERENT INSULATION MATERIALS. Advances in Science and Technology Research Journal, 2016, 10, 215-221.	0.8	12
89	Application of polymer element in reduction of temporary steel grandstand vibrations. , 2016, , 331-334.		0
90	Influence of separation gap on the response of colliding models of steel structures under seismic and paraseismic excitations. , 2016, , 533-536.		1

6

#	Article	IF	CITATIONS
91	Building damage due to structural pounding during earthquakes. Journal of Physics: Conference Series, 2015, 628, 012040.	0.4	6
92	Experimental study on the effectiveness of polymer damper in damage reduction of temporary steel grandstand. Journal of Physics: Conference Series, 2015, 628, 012051.	0.4	7
93	Vibration Problems of an Example of Temporary Steel Grandstand under Human-Induced Excitation / Problemy DrgaÅ,, PrzykÅ,adowej Tymczasowej Trybuny Stalowej Poddanej OddziaÅ,ywaniom Dynamicznym WywoÅ,anym Przez Ludzi. Civil and Environmental Engineering Reports, 2015, 16, 119-128.	0.3	1
94	Earthquake-Induced Structural Pounding. GeoPlanet: Earth and Planetary Sciences, 2015, , .	0.2	39
95	Pounding Between Superstructure Segments in Multi-Supported Elevated Bridge with Three-Span Continuous Deck Under 3D Non-Uniform Earthquake Excitation. Journal of Earthquake and Tsunami, 2015, 09, 1550012.	1.3	38
96	Experimental and Numerical Study on Pounding of Structures in Series. , 2015, , 1073-1089.		3
97	CONSTRUCTION TECHNOLOGY OF TIMBER-FRAME HOUSES RESISTANT TO DYNAMIC LOADS – STUDY ON MODELS OF EXTERIOR WALLS. Advances in Science and Technology Research Journal, 2015, 9, 75-80.	0.8	7
98	Mitigation of Pounding Effects. GeoPlanet: Earth and Planetary Sciences, 2015, , 103-132.	0.2	3
99	Pounding Between Bridge Segments. GeoPlanet: Earth and Planetary Sciences, 2015, , 73-102.	0.2	Ο
100	Modelling of Structural Pounding. GeoPlanet: Earth and Planetary Sciences, 2015, , 9-34.	0.2	1
101	Parameter estimation by fixed point of function of information processing intensity. Physica A: Statistical Mechanics and Its Applications, 2014, 416, 558-563.	2.6	1
102	Experimental Study on Steel Tank Model Using Shaking Table/ Badania Eksperymentalne Modelu Zbiornika Stalowego Na Stole Sejsmicznym. Civil and Environmental Engineering Reports, 2014, 14, 37-47.	0.3	6
103	On the existence of bounded solutions for nonlinear second order neutral difference equations. Electronic Journal of Qualitative Theory of Differential Equations, 2014, , 1-12.	0.5	5
104	Traffic-induced vibrations. The impact on buildings and people. , 2014, , .		13
105	Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences. Discrete and Continuous Dynamical Systems - Series B, 2014, 19, 2691-2696.	0.9	9
106	Oscillatory properties of solutions of the fourth order difference equations with quasidifferences. Opuscula Mathematica, 2014, 34, 789.	0.8	8
107	Earthquake-induced pounding between equal height multi-storey buildings considering soil-structure interaction. Bulletin of Earthquake Engineering, 2013, 11, 1021-1048.	4.1	65
108	An Approach for the Response of Buildings Subjected to Impact Load after Soft-Story Failure due to Earthquake Excitation. Shock and Vibration, 2013, 20, 681-692.	0.6	2

#	Article	IF	CITATIONS
109	Numerical analysis of a temporary steel grandstand. , 2013, , 543-546.		4
110	Numerical study on seismic response of a base-isolated building modelled with shell elements. , 2013, , 503-506.		0
111	Numerical Analysis of a Steel Frame Building with Soft-Storey Failure under Ground Motion Excitation. Key Engineering Materials, 2012, 525-526, 481-484.	0.4	0
112	Estimation of Stresses in a Dry Sand Layer Tested on Shaking Table. Archives of Hydroengineering and Environmental Mechanics, 2012, 59, 101-112.	1.3	2
113	Simulation of the response of base-isolated buildings under earthquake excitations considering soil flexibility. Earthquake Engineering and Engineering Vibration, 2012, 11, 359-374.	2.3	32
114	Non-linear FEM analysis of pounding-involved response of buildings under non-uniform earthquake excitation. Engineering Structures, 2012, 37, 99-105.	5.3	55
115	Behaviour of Deformed Steel Columns Exposed to Impact Load During Earthquakes: Experimental Study. Journal of Applied Sciences, 2012, 12, 466-472.	0.3	5
116	Behaviour of Deformed Steel Columns Exposed to Impact Load During Earthquakes: Numerical Analysis. Journal of Applied Sciences, 2012, 12, 2304-2311.	0.3	0
117	Experimental study on earthquakeâ€induced pounding between structural elements made of different building materials. Earthquake Engineering and Structural Dynamics, 2010, 39, 343-354.	4.4	47
118	Multiple Solutions of Boundary-Value Problems forÂFourth-Order Differential Equations withÂDeviating Arguments. Journal of Optimization Theory and Applications, 2010, 146, 105-115.	1.5	8
119	Pounding-involved response of isolated and non-isolated buildings under earthquake excitation. Earthquake and Structures, 2010, 1, 231-252.	1.0	31
120	Shaking table experimental study on the effectiveness of polymer bearings for seismic isolation of structures. Proceedings in Applied Mathematics and Mechanics, 2009, 9, 239-240.	0.2	0
121	Experimental study on the behaviour of steel columns under seismic-induced axial impact load. Proceedings in Applied Mathematics and Mechanics, 2009, 9, 253-254.	0.2	Ο
122	Non-linear FEM analysis of earthquake-induced pounding between the main building and the stairway tower of the Olive View Hospital. Engineering Structures, 2009, 31, 1851-1864.	5.3	78
123	Elastic and Inelastic Multi-Storey Buildings Under Earthquake Excitation with the Effect of Pounding. Journal of Applied Sciences, 2009, 9, 3250-3262.	0.3	39
124	Non-linear FEM analysis of earthquake-induced pounding between two buildings modelled by shell elements. , 2009, , 171-174.		0
125	Earthquake-induced pounding between equal height buildings with substantially different dynamic properties. Engineering Structures, 2008, 30, 2818-2829.	5.3	83
126	Comparison of Numerical Models of Impact Force for Simulation of Earthquake-Induced Structural Pounding. Lecture Notes in Computer Science, 2008, , 710-717.	1.3	3

#	Article	IF	CITATIONS
127	Structural Pounding Models with Hertz Spring and Nonlinear Damper. Journal of Applied Sciences, 2008, 8, 1850-1858.	0.3	33
128	Numerical Simulation of Threshold-Crossing Problem for Random Fields of Environmental Contamination. Lecture Notes in Computer Science, 2008, , 614-621.	1.3	0
129	Assessment of Damage Due to Earthquake-Induced Pounding between the Main Building and the Stairway Tower. Key Engineering Materials, 2007, 347, 339-344.	0.4	35
130	Pounding force response spectrum under earthquake excitation. Engineering Structures, 2006, 28, 1149-1161.	5.3	65
131	Analytical expression between the impact damping ratio and the coefficient of restitution in the non-linear viscoelastic model of structural pounding. Earthquake Engineering and Structural Dynamics, 2006, 35, 517-524.	4.4	107
132	Non-linear viscoelastic modelling of earthquake-induced structural pounding. Earthquake Engineering and Structural Dynamics, 2005, 34, 595-611.	4.4	268
133	Impact Force Spectrum for Damage Assessment of Earthquake-Induced Structural Pounding. Key Engineering Materials, 2005, 293-294, 711-718.	0.4	37
134	Nonlinear Rate Dependent Model of High Damping Rubber Bearing. Bulletin of Earthquake Engineering, 2003, 1, 397-403.	4.1	39
135	PRP1 EPIDEMIOLOGY OF NASAL POLYPS AND ITS RELATIONSHIP TO ASTHMA. Value in Health, 2003, 6, 776.	0.3	0
136	Optimization of Coal Mill Using an MPC Type Controller. , 2003, , 233.		6
137	Reduction of pounding effects in elevated bridges during earthquakes. Earthquake Engineering and Structural Dynamics, 2000, 29, 195-212.	4.4	116
138	A simple method of conditional random field simulation of ground motions for long structures. Engineering Structures, 2000, 22, 552-561.	5.3	37
139	The nuclear protein import assay in vascular smooth muscle cells. Journal of Pharmacological and Toxicological Methods, 2000, 44, 421-427.	0.7	4
140	Reduction of pounding effects in elevated bridges during earthquakes. Earthquake Engineering and Structural Dynamics, 2000, 29, 195-212.	4.4	3
141	Pounding of superstructure segments in isolated elevated bridge during earthquakes. Earthquake Engineering and Structural Dynamics, 1998, 27, 487-502.	4.4	161
142	Modeling of two-dimensional random fields. Probabilistic Engineering Mechanics, 1997, 12, 115-121.	2.7	32
143	Drug Assay in Ground Tissues: Example of Ketoprofen Diffusion into Tonsillar Tissue. Journal of Pharmaceutical Sciences, 1990, 79, 791-795.	3.3	3
144	Assessment of the respirable dust levels in the nation's underground and surface coal mining operations. AIHA Journal, 1979, 40, 910-915.	0.4	14

#	Article	IF	CITATIONS
145	Application of FACTS technology for power flow control in the Polish power grid. , 0, , .		1
146	Inelastic Damage-Involved Response of Colliding Buildings during Earthquakes. Key Engineering Materials, 0, 417-418, 513-516.	0.4	1
147	Shaking Table Experimental Study on Diagnosis of Damage and its Evaluation in Steel Structure. Key Engineering Materials, 0, 417-418, 157-160.	0.4	2
148	Linear Viscoelastic Modelling of Damage-Involved Structural Pounding during Earthquakes. Key Engineering Materials, 0, 452-453, 357-360.	0.4	0
149	Non-Linear Behaviour of Base-Isolated Building Supported on Flexible Soil under Damaging Earthquakes. Key Engineering Materials, 0, 488-489, 142-145.	0.4	3
150	Experimental Study on Polymer Mass Used to Repair Damaged Structures. Key Engineering Materials, 0, 488-489, 347-350.	0.4	23
151	Shaking Table Experimental Study on Damage Mechanism of the Disconnecting Switch under Seismic Excitation. Key Engineering Materials, 0, 488-489, 351-354.	0.4	0
152	Diagnosis of Damage in a Steel Tank Model by Shaking Table Harmonic Tests. Key Engineering Materials, 0, 525-526, 477-480.	0.4	2
153	Behaviour of Colliding Multi-Storey Buildings under Earthquake Excitation Considering Soil-Structure Interaction. Applied Mechanics and Materials, 0, 166-169, 2283-2292.	0.2	3
154	Diagnosis of Damage in a Steel Tank with Self-Supported Roof through Numerical Analysis. Key Engineering Materials, 0, 569-570, 374-381.	0.4	0
155	Damage-Involved Response of Two Colliding Buildings under Non-Uniform Earthquake Loading. Key Engineering Materials, 0, 577-578, 197-200.	0.4	0
156	Polymeric Bearings – A New Base Isolation System to Reduce Structural Damage during Earthquakes. Key Engineering Materials, 0, 569-570, 143-150.	0.4	32
157	Experimental Study on Pounding between Structures during Damaging Earthquakes. Key Engineering Materials, 0, 627, 249-252.	0.4	17
158	Enhancing the Seismic Resistance of Columns by GFRP Confinement Using Flexible Adhesive-Experimental Study. Key Engineering Materials, 0, 624, 478-485.	0.4	9
159	Pounding between Inelastic Three-Storey Buildings under Seismic Excitations. Key Engineering Materials, 0, 665, 121-124.	0.4	7
160	The Effectiveness of Polymer Damper in Damage Reduction of Temporary Steel Grandstand. Key Engineering Materials, 0, 713, 171-174.	0.4	6
161	Increasing the Seismic Resistance of Wood-frame Buildings by Applying PU Foam as Thermal Insulation. Periodica Polytechnica: Civil Engineering, 0, , .	0.6	5
162	Assessment of Damage Due to Earthquake-Induced Pounding between the Main Building and the Stairway Tower. Key Engineering Materials, 0, , 339-344.	0.4	2

#	Article	IF	CITATIONS
163	Microseismic Monitoring of Hydraulic Fracturing – Data Interpretation Methodology with an Example from Pomerania. , 0, , .		0
164	Planning, Configuration and Usefulness of Microseismic Monitoring on Eastern-Europe Platform – Example from East Pomerania. , 0, , .		0