Nobuaki Kubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/562168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GNSS NLOS Signal Classification Based on Machine Learning and Pseudorange Residual Check. Frontiers in Robotics and Al, 2022, 9, .	3.2	6
2	Performance Evaluation of Centimeter-Level Augmentation Positioning L6-CLAS/MADOCA at the Beginning of Official Operation of QZSS. IEEJ Journal of Industry Applications, 2021, 10, 27-35.	1.1	3
3	Performance Evaluation of IMU and DVL Integration in Marine Navigation. Sensors, 2021, 21, 1056.	3.8	11
4	Calibration and analysis of BDS receiver-dependent code biases. Journal of Geodesy, 2021, 95, 1.	3.6	12
5	Contribution of QZSS with four satellites to multi-GNSS long baseline RTK. Journal of Spatial Science, 2020, 65, 41-60.	1.5	8
6	Apparent clock and TGD biases between BDS-2 and BDS-3. GPS Solutions, 2020, 24, 1.	4.3	22
7	Reliable Positioning and Journey Planning for Intelligent Transport Systems. , 2020, , .		2
8	GNSS Multipath Detection Using Continuous Time-Series C/NO. Sensors, 2020, 20, 4059.	3.8	25
9	Verification of GNSS multipath and positioning in urban areas using 3D maps. IEICE Communications Express, 2020, 9, 529-534.	0.4	3
10	Linear time-series modeling of the GNSS based TEC variations over Southwest Japan during 2011–2018 and comparison against ARMA and GIM models. Acta Astronautica, 2019, 165, 248-258.	3.2	32
11	Initial Positioning Assessment of BDS New Satellites and New Signals. Remote Sensing, 2019, 11, 1320.	4.0	41
12	Comparative evaluation on IMES and the other positioning systems for navigation performance in a ship. Electronics and Communications in Japan, 2019, 102, 36-47.	0.5	1
13	An Improved Method for BDS Inter-frequency Clock Bias Estimation. Lecture Notes in Electrical Engineering, 2019, , 39-48.	0.4	2
14	Prediction of Fixing of RTK-GNSS Positioning in Multipath Environment Using Radiowave Propagation Simulation. Journal of the Institute of Positioning Navigation and Timing of Japan, 2019, 10, 13-22.	0.2	2
15	Comparative Evaluation on IMES and the Other Positioning Systems for Navigation Performance in a Ship. IEEJ Transactions on Electronics, Information and Systems, 2019, 139, 543-553.	0.2	Ο
16	Mixed GPS–BeiDou RTK with inter-systems bias estimation aided by CSAC. GPS Solutions, 2018, 22, 1.	4.3	20
17	Performance evaluation of the 3D MAP based precise positioning and its application. , 2018, , .		1
18	Initial performance evaluation of centimeterâ€class augmentation system using Quasiâ€Zenith Satellite System. Electronics and Communications in Japan, 2018, 101, 3-10.	0.5	4

Νοβυακί Κυβο

#	Article	IF	CITATIONS
19	Integrity monitoring for Positioning of intelligent transport systems using integrated RTKâ€GNSS, IMU and vehicle odometer. IET Intelligent Transport Systems, 2018, 12, 901-908.	3.0	47
20	Initial Performance Evaluation of cm-class Augmentation System using Quasi-Zenith Satellite System. IEEJ Transactions on Industry Applications, 2018, 138, 173-179.	0.2	1
21	Development of Indoor Positioning System using IMES for Smart Phone. IEEJ Transactions on Electronics, Information and Systems, 2018, 138, 193-203.	0.2	Ο
22	Multiple Faulty GNSS Measurement Exclusion Based on Consistency Check in Urban Canyons. IEEE Sensors Journal, 2017, 17, 1909-1917.	4.7	85
23	Integrity monitoring of vehicle positioning in urban environment using RTK-GNSS, IMU and speedometer. Measurement Science and Technology, 2017, 28, 055102.	2.6	38
24	Maintaining real-time precise point positioning during outages of orbit and clock corrections. GPS Solutions, 2017, 21, 937-947.	4.3	82
25	Improvement of Dead Reckoning in Urban Areas Through Integration of Low-Cost Multisensors. IEEE Transactions on Intelligent Vehicles, 2017, 2, 278-287.	12.7	15
26	Real-time monitoring for structure deformations using hand-held RTK-GNSS receivers on the wall. , 2017, , .		2
27	Efficient Satellite Selection Method for Instantaneous RTK-GNSS in Challenging Environments. Transactions of the Japan Society for Aeronautical and Space Sciences, 2017, 60, 221-229.	0.7	9
28	Positioning Simulation Using a 3D Map and Verification of Positional Estimation Accuracy in Urban Areas Using Actual Measurement. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 2016, 9, 171-179.	0.3	3
29	Protecting GNSS Receivers From Jamming and Interference. Proceedings of the IEEE, 2016, 104, 1327-1338.	21.3	123
30	Performance Improvement of RTK-GNSS with IMU and Vehicle Speed Sensors in an Urban Environment. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99.A, 217-224.	0.3	11
31	Performance evaluation of GNSS-based railway applications. , 2015, , .		4
32	Cooperative Relative Positioning for Intelligent Transportation System. International Journal of Intelligent Transportation Systems Research, 2015, 13, 131-142.	1.1	6
33	Multipath mitigation and NLOS detection using vector tracking in urban environments. GPS Solutions, 2015, 19, 249-262.	4.3	84
34	Satellite Based Train Positioning Using Three-dimensional Track Maps . Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), 2015, 56, 194-199.	0.4	3
35	Experimental Evaluation of Cooperative Relative Positioning for Intelligent Transportation System. International Journal of Navigation and Observation, 2014, 2014, 1-12.	0.8	1
36	Autonomous Navigation of a Mobile Robot Based on GNSS/DR Integration in Outdoor Environments. Journal of Robotics and Mechatronics, 2014, 26, 214-224.	1.0	15

Νοβυακί Κυβο

#	Article	IF	CITATIONS
37	Initial Assessment of Medium-Baseline Single-Epoch RTK Using GPS/BeiDou/QZSS. IEICE Transactions on Communications, 2014, E97.B, 1195-1204.	0.7	1
38	Precise point positioning for mobile robots using software GNSS receiver and QZSS LEX signal. , 2013, , .		5
39	Vehicle Teleoperation Using 3D Maps and GPS Time Synchronization. IEEE Computer Graphics and Applications, 2013, 33, 82-88.	1.2	9
40	Cooperative relative positioning for intelligent transportation system. , 2012, , .		6
41	RTK-GPS Reliability Improvement in Dense Urban Areas. Journal of the Japan Society for Aeronautical and Space Sciences, 2012, 60, 40-47.	0.1	5
42	Advantage of velocity measurements on instantaneous RTK positioning. GPS Solutions, 2009, 13, 271-280.	4.3	28
43	Evaluation of GPS Dual Frequency Application Using L2 Civilian Signal. Transactions of the Japan Society for Aeronautical and Space Sciences, 2008, 51, 101-106.	0.7	Ο
44	DS-SS modulated extremely weak power radio communications system synchronized by a GPS receiver PPS signal. Electronics and Communications in Japan, 2007, 90, 39-50.	0.1	0
45	Evaluation of the Pseudorange Performance by Using Software GPS Receiver. The Journal of Global Positioning Systems, 2005, 4, 215-222.	1.6	6
46	Development of a Prototyping Platform for Software GPS Receiver. The Journal of Japan Institute of Navigation, 2004, 111, 193-200.	0.1	1
47	Performance evaluation of GPS augmentation using quasi-zenith satellite system. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40, 1249-1261.	4.7	30
48	Performance analysis of GPS augmentation using Japanese Quasi-Zenith Satellite System. Earth, Planets and Space, 2004, 56, 25-37.	2.5	20
49	Integral GPS and QZSS Ambiguity Resolution. Transactions of the Japan Society for Aeronautical and Space Sciences, 2004, 47, 38-43.	0.7	4
50	Achievement of Continuous Decimeter-Level Accuracy Using Low-Cost Single-Frequency Receivers in Urban Environments. , 0, , .		2
51	Benefits of Adaptive Kalman Filter-Based Single Point Positioning in Dense Urban Environments. , 0, , .		1
52	Performance Evaluation and Future Application of Real-Time PPP Product in Japan. , O, , .		2
53	Performance Evaluation and A New Disaster Prevention System of Precise Point Positioning at Sea. , 0, ,		4

54 Integrity Monitoring for Advanced Driver Assistance Systems. , 0, , .

#	Article	IF	CITATIONS
55	Effect of Inter-system Biases Estimation for Mixed GPS-BeiDou on Ambiguity Resolution. , 0, , .		Ο
56	Visual Odometry with Dynamic Object Detection by Complementary Integration of Optical Flows and Pattern Recognition. , 0, , .		0
57	Real-Time Monitoring of Structure Movements Using Low-Cost, Wall-Mounted, Hand-held RTK-GNSS Receivers. , 0, , .		2
58	Improved Integration Method of Wide-area RTK/PPP with IMU and Odometer. , 0, , .		0
59	Prediction of RTK-GNSS Performance in Urban Environments Using a 3D model and Continuous LoS Method. , 0, , .		4