
Thomas Klockgether

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/562166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spinocerebellar ataxia. Nature Reviews Disease Primers, 2019, 5, 24.	18.1	377
2	NMDA antagonists potentiate antiparkinsonian actions ofL-dopa in monoamine-depleted rats. Annals of Neurology, 1990, 28, 539-546.	2.8	290
3	Molecular and Clinical Correlations in Spinocerebellar Ataxia 2: A Study of 32 Families. Human Molecular Genetics, 1997, 6, 709-715.	1.4	270
4	Magnetic resonance imaging-based volumetry differentiates idiopathic Parkinson's syndrome from multiple system atrophy and progressive supranuclear palsy. Annals of Neurology, 1999, 45, 65-74.	2.8	255
5	The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Annals of Neurology, 1991, 30, 717-723.	2.8	251
6	A defect of kinesthesia in Parkinson's disease. Movement Disorders, 1995, 10, 460-465.	2.2	226
7	Hereditary spastic paraplegia: Clinicogenetic lessons from 608 patients. Annals of Neurology, 2016, 79, 646-658.	2.8	218
8	Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study. Lancet Neurology, The, 2015, 14, 1101-1108.	4.9	213
9	Sporadic ataxia with adult onset: classification and diagnostic criteria. Lancet Neurology, The, 2010, 9, 94-104.	4.9	204
10	An Isoform of Ataxinâ€3 Accumulates in the Nucleus of Neuronal Cells in Affected Brain Regions of SCA3 Patients. Brain Pathology, 1998, 8, 669-679.	2.1	189
11	Induction of Nitric Oxide Synthase and Nitric Oxideâ€Mediated Apoptosis in Neuronal PC12 Cells After Stimulation with Tumor Necrosis FActorâ€Î±/Lipopolysaccharide. Journal of Neurochemistry, 1998, 71, 88-94.	2.1	186
12	Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data. Lancet Neurology, The, 2013, 12, 650-658.	4.9	167
13	Reliability and validity of the scale for the assessment and rating of ataxia: A study in 64 ataxia patients. Movement Disorders, 2007, 22, 1633-1637.	2.2	161
14	Biological and clinical characteristics of the European Friedreich's Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurology, The, 2015, 14, 174-182.	4.9	159
15	Magnetic resonance imaging–based volumetry differentiates idiopathic Parkinson's syndrome from multiple system atrophy and progressive supranuclear palsy. , 1999, 45, 65.		152
16	Toward an understanding of the role of glutamate in experimental parkinsonism: Agonist-sensitive sites in the basal ganglia. Annals of Neurology, 1993, 34, 585-593.	2.8	141
17	Bright light therapy in Parkinson's disease: A pilot study. Movement Disorders, 2007, 22, 1495-1498.	2.2	137
18	Neuronal and Glial Coexpression of Argininosuccinate Synthetase and Inducible Nitric Oxide Synthase in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2001, 60, 906-916.	0.9	134

#	Article	IF	CITATIONS
19	Visual control of arm movement in Parkinson's disease. Movement Disorders, 1994, 9, 48-56.	2.2	122
20	Restless legs syndrome in spinocerebellar ataxia types 1, 2, and 3. Journal of Neurology, 2001, 248, 311-314.	1.8	121
21	Parkinson?s disease: clinical aspects. Cell and Tissue Research, 2004, 318, 115-120.	1.5	117
22	Progression characteristics of the European Friedreich's Ataxia Consortium for Translational Studies (EFACTS): a 2 year cohort study. Lancet Neurology, The, 2016, 15, 1346-1354.	4.9	117
23	SCA6 is caused by moderate CAG expansion in the alpha1A-voltage- dependent calcium channel gene. Human Molecular Genetics, 1997, 6, 1289-1293.	1.4	104
24	The preclinical stage of spinocerebellar ataxias. Neurology, 2015, 85, 96-103.	1.5	101
25	Update on degenerative ataxias. Current Opinion in Neurology, 2011, 24, 339-345.	1.8	95
26	Cooperative Interception of Neuronal Apoptosis by BCLâ€2 and BAGâ€1 Expression: Prevention of Caspase Activation and Reduced Production of Reactive Oxygen Species. Journal of Neurochemistry, 1997, 69, 2075-2086.	2.1	94
27	Extended therapeutic window for caspase inhibition and synergy with MK-801 in the treatment of cerebral histotoxic hypoxia. Cell Death and Differentiation, 1998, 5, 847-857.	5.0	93
28	Natural History, Phenotypic Spectrum, and Discriminative Features of Multisystemic RFC1 Disease. Neurology, 2021, 96, e1369-e1382.	1.5	93
29	Variants associated with Gaucher disease in multiple system atrophy. Annals of Clinical and Translational Neurology, 2015, 2, 417-426.	1.7	90
30	Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6. Journal of Medical Genetics, 2014, 51, 479-486.	1.5	85
31	Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain, 2017, 140, 1561-1578.	3.7	85
32	Dopamine control of seizure propagation: Intranigral dopamine D1 agonist SKF-38393 enhances susceptibility of seizures. Synapse, 1990, 5, 113-119.	0.6	83
33	Antiparkinsonian activity of Ro 25-6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson's disease. Experimental Neurology, 2004, 187, 86-93.	2.0	81
34	Milestones in ataxia. Movement Disorders, 2011, 26, 1134-1141.	2.2	78
35	A new semiautomated, three-dimensional technique allowing precise quantification of total and regional cerebellar volume using MRI. Magnetic Resonance in Medicine, 1998, 40, 143-151.	1.9	77
36	A critique of the second consensus criteria for multiple system atrophy. Movement Disorders, 2019, 34, 975-984.	2.2	73

#	Article	IF	CITATIONS
37	Neurofilaments in spinocerebellar ataxia type 3: blood biomarkers at the preataxic and ataxic stage in humans and mice. EMBO Molecular Medicine, 2020, 12, e11803.	3.3	73
38	Survival in patients with spinocerebellar ataxia types 1, 2, 3, and 6 (EUROSCA): a longitudinal cohort study. Lancet Neurology, The, 2018, 17, 327-334.	4.9	69
39	Cell death in polyglutamine diseases. Cell and Tissue Research, 2000, 301, 189-204.	1.5	66
40	Screening for proteins with polyglutamine expansions in autosomal dominant cerebellar ataxias. Human Molecular Genetics, 1996, 5, 1887-1892.	1.4	63
41	The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum, 2008, 7, 101-105.	1.4	63
42	Peripheral Neuropathy in Spinocerebellar Ataxia Type 1, 2, 3, and 6. Cerebellum, 2016, 15, 165-173.	1.4	54
43	Progression characteristics of the European Friedreich's Ataxia Consortium for Translational Studies (EFACTS): a 4-year cohort study. Lancet Neurology, The, 2021, 20, 362-372.	4.9	53
44	Cognition in Friedreich's ataxia: a behavioral and multimodal imaging study. Annals of Clinical and Translational Neurology, 2016, 3, 572-587.	1.7	50
45	The molecular biology of the autosomal-dominant cerebellar ataxias. Movement Disorders, 2000, 15, 604-612.	2.2	49
46	Elevated in vivo [18F]â€AVâ€1451 uptake in a patient with progressive supranuclear palsy. Movement Disorders, 2017, 32, 170-171.	2.2	49
47	Loss of paraplegin drives spasticity rather than ataxia in a cohort of 241 patients with <i>SPG7</i> . Neurology, 2019, 92, e2679-e2690.	1.5	49
48	Clinical and genetic characteristics of sporadic adult-onset degenerative ataxia. Neurology, 2017, 89, 1043-1049.	1.5	45
49	Conversion of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 to manifest ataxia (RISCA): a longitudinal cohort study. Lancet Neurology, The, 2020, 19, 738-747.	4.9	41
50	Multisystemic <i>SYNE1</i> ataxia: confirming the high frequency and extending the mutational and phenotypic spectrum. Brain, 2016, 139, e46-e46.	3.7	40
51	Ataxias. Parkinsonism and Related Disorders, 2007, 13, S391-S394.	1.1	37
52	Regional Brain and Spinal Cord Volume Loss in Spinocerebellar Ataxia Type 3. Movement Disorders, 2021, 36, 2273-2281.	2.2	37
53	Development of <scp>SARA^{home}</scp> , a New Videoâ€Based Tool for the Assessment of Ataxia at Home. Movement Disorders, 2021, 36, 1242-1246.	2.2	36
54	Long-term evolution of patient-reported outcome measures in spinocerebellar ataxias. Journal of Neurology, 2018, 265, 2040-2051.	1.8	34

#	Article	IF	CITATIONS
55	Structural characteristics of the central nervous system in FriedreichÂataxia: an in vivo spinal cord and brain MRI study. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 615-617.	0.9	33
56	Recent advances in degenerative ataxias. Current Opinion in Neurology, 2000, 13, 451-455.	1.8	31
57	Tracking the brain in myotonic dystrophies: A 5-year longitudinal follow-up study. PLoS ONE, 2019, 14, e0213381.	1.1	31
58	Synthesis and biological effects of NO in malignant glioma cells: modulation by cytokines including CD95L and TGF-β dexamethasone, and p53 gene transfer. Oncogene, 1998, 17, 2323-2332.	2.6	30
59	Bi-allelic HPDL Variants Cause a Neurodegenerative Disease Ranging from Neonatal Encephalopathy to Adolescent-Onset Spastic Paraplegia. American Journal of Human Genetics, 2020, 107, 364-373.	2.6	30
60	Phenotype assignment in symptomatic female carriers of X-linked adrenoleukodystrophy. Journal of Neurology, 2001, 248, 36-44.	1.8	29
61	The European Reference Network for Rare Neurological Diseases. Frontiers in Neurology, 2020, 11, 616569.	1.1	26
62	Tau and neurofilament light hain as fluid biomarkers in spinocerebellar ataxia type 3. European Journal of Neurology, 2022, 29, 2439-2452.	1.7	25
63	Sporadic adult-onset ataxia of unknown etiology. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 253-262.	1.0	23
64	Sporadic adult-onset ataxia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 155, 217-225.	1.0	23
65	Apolipoprotein E Îμ4 does not affect cognitive performance in patients with Parkinson's disease. Parkinsonism and Related Disorders, 2016, 29, 112-116.	1.1	22
66	Paving the Way Toward Meaningful Trials in Ataxias: An Ataxia Global Initiative Perspective. Movement Disorders, 2022, 37, 1125-1130.	2.2	21
67	Cerebellar Transcranial Direct Current Stimulation in Spinocerebellar Ataxia Type 3: a Randomized, Double-Blind, Sham-Controlled Trial. Neurotherapeutics, 2022, 19, 1259-1272.	2.1	21
68	Dual task effect on postural control in patients with degenerative cerebellar disorders. Cerebellum and Ataxias, 2015, 2, 6.	1.9	20
69	Cerebellar transcranial direct current stimulation in spinocerebellar ataxia type 3 (SCA3-tDCS): rationale and protocol of a randomized, double-blind, sham-controlled study. BMC Neurology, 2019, 19, 149.	0.8	20
70	Disentangling motor planning and motor execution in unmedicated de novo Parkinson's disease patients: An fMRI study. NeuroImage: Clinical, 2019, 22, 101784.	1.4	20
71	The NMDA antagonist budipine can alleviate levodopa-induced motor fluctuations. Movement Disorders, 1999, 14, 517-519.	2.2	19
72	Update of the effect estimates for common variants associated with carotid intima media thickness within four independent samples: The Bonn IMT Family Study, the Heinz Nixdorf Recall Study, the SAPHIR Study and the Bruneck Study. Atherosclerosis, 2016, 249, 83-87.	0.4	18

#	Article	IF	CITATIONS
73	Twenty-year follow-up of a pilot/phase II trial on the Bonn protocol for primary CNS lymphoma. Neurology, 2020, 95, e3138-e3144.	1.5	18
74	Patientâ€reported outcomes in Friedreich's ataxia after withdrawal from idebenone. Acta Neurologica Scandinavica, 2019, 139, 533-539.	1.0	17
75	Therapeutic prospects for spinocerebellar ataxia type 2 and 3. Drugs of the Future, 2009, 34, 991.	0.0	17
76	Friedreich and dominant ataxias: quantitative differences in cerebellar dysfunction measurements. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 559-565.	0.9	16
77	Increased risk for subarachnoid hemorrhage in patients with sleep apnea. Journal of Neurology, 2019, 266, 1351-1357.	1.8	15
78	PolyQ-expanded ataxin-3 protein levels in peripheral blood mononuclear cells correlate with clinical parameters in SCA3: a pilot study. Journal of Neurology, 2021, 268, 1304-1315.	1.8	15
79	The ARCA Registry: A Collaborative Global Platform for Advancing Trial Readiness in Autosomal Recessive Cerebellar Ataxias. Frontiers in Neurology, 2021, 12, 677551.	1.1	15
80	Quantitative susceptibility mapping reveals alterations of dentate nuclei in common types of degenerative cerebellar ataxias. Brain Communications, 2022, 4, fcab306.	1.5	15
81	Levels of Neurofilament Light at the Preataxic and Ataxic Stages of Spinocerebellar Ataxia Type 1. Neurology, 2022, 98, .	1.5	15
82	Prediction of Survival With Longâ€Term Disease Progression in Most Common Spinocerebellar Ataxia. Movement Disorders, 2019, 34, 1220-1227.	2.2	14
83	Central Pain Processing in Early-Stage Parkinson's Disease: A Laser Pain fMRI Study. PLoS ONE, 2016, 11, e0164607.	1.1	12
84	Differential Temporal Dynamics of Axial and Appendicular Ataxia in <scp>SCA3</scp> . Movement Disorders, 2022, 37, 1850-1860.	2.2	11
85	An update on inherited ataxias. Current Neurology and Neuroscience Reports, 2008, 8, 310-319.	2.0	10
86	No association between Parkinson disease and autoantibodies against NMDA-type glutamate receptors. Translational Neurodegeneration, 2019, 8, 11.	3.6	10
87	Application of Quantitative Motor Assessments in Friedreich Ataxia and Evaluation of Their Relation to Clinical Measures. Cerebellum, 2019, 18, 896-909.	1.4	9
88	How specific are non-motor symptoms in the prodrome of Parkinson's disease compared to other movement disorders?. Parkinsonism and Related Disorders, 2020, 81, 213-218.	1.1	8
89	Blood Neurofilament Light Chain in Genetic Ataxia: A Metaâ€Analysis. Movement Disorders, 2022, 37, 171-181.	2.2	8
90	Zotepine in levodopa-induced psychosis. Movement Disorders, 1995, 10, 795-797.	2.2	7

#	Article	IF	CITATIONS
91	Pathological yawning (chasm) associated with periodic leg movements in sleep: cure by levodopa. Journal of Neurology, 1999, 246, 621-622.	1.8	7
92	Wernicke encephalopathy. Neurology, 2016, 87, 1956-1957.	1.5	7
93	Expanded phenotype and hippocampal involvement in a novel compound heterozygosity of adult PLA2G6 associated neurodegeneration (PARK14). Parkinsonism and Related Disorders, 2017, 37, 111-113.	1.1	7
94	Adultâ€Onset Neurodegeneration in Nucleotide Excision Repair Disorders (<scp>NERD_{ND}</scp>): Time to Move Beyond the Skin. Movement Disorders, 2022, 37, 1707-1718.	2.2	7
95	International Medical Workshop covering progressive supranuclear palsy, multiple system atrophy and cortico basal degeneration. Movement Disorders, 2001, 16, 382-395.	2.2	6
96	Multiple system atrophy mimicry in MRI: Watch out for paraneoplastic rhombencephalitis. Journal of Clinical Neuroscience, 2020, 76, 238-240.	0.8	6
97	Coherent Structural and Functional Network Changes after Thalamic Lesions in Essential Tremor. Movement Disorders, 2022, 37, 1924-1929.	2.2	6
98	Research priorities for rare neurological diseases: a representative view of patient representatives and healthcare professionals from the European Reference Network for Rare Neurological Diseases. Orphanet Journal of Rare Diseases, 2021, 16, 135.	1.2	5
99	Magnetic Resonance Imaging–Guided Focused Ultrasound Thalamotomy in Spinocerebellar Ataxia Type 12. Movement Disorders, 2022, 37, 872-873.	2.2	5
100	Intermediate phenotype of ATP13A2 mutation in two Chilean siblings: Towards a continuum between parkinsonism and hereditary spastic paraplegia. Parkinsonism and Related Disorders, 2020, 81, 45-47.	1.1	4
101	Minocycline-induced benign intracranial hypertension. Journal of Neurology, 1997, 245, 55-55.	1.8	3
102	Mirror movements and blepharoclonus as novel phenomena in hereditary diffuse leukoencephalopathy with spheroids. Parkinsonism and Related Disorders, 2019, 58, 83-84.	1.1	3
103	A word of hope for ataxia trials in COVID-19 time and beyond. Journal of Neurology, 2021, 268, 2343-2345.	1.8	3
104	Effects of Rivastigmine on Patients with Spinocerebellar Ataxia Type 3: A Case Series of Five Patients. Neurodegenerative Diseases, 2020, 20, 104-109.	0.8	3
105	Increased brain tissue sodium concentration in Friedreich ataxia: A multimodal MR imaging study. NeuroImage: Clinical, 2022, 34, 103025.	1.4	3
106	Significance of lipopigments with fingerprint profiles in eccrine sweat gland epithelial cells. American Journal of Medical Genetics Part A, 1995, 57, 187-190.	2.4	2
107	The art of making a clinical diagnosis of multiple system atrophy. Brain, 2019, 142, 2555-2557.	3.7	2
108	Information Extraction from German Clinical Care Documents in Context of Alzheimer's Disease. Applied Sciences (Switzerland), 2021, 11, 10717.	1.3	2

#	Article	IF	CITATIONS
109	Hereditary ataxias. Handbook of Clinical Neurophysiology, 2004, 4, 655-673.	0.0	1
110	Depression in Patients with Spinocerebellar Ataxia Type 3 (SCA3). Cerebellum, 2010, 9, 606-607.	1.4	1
111	Spinocerebellar ataxia type 2: progression before diagnosis. Lancet Neurology, The, 2014, 13, 445-446.	4.9	1
112	Does degeneration of the subthalamic nucleus prevent parkinsonism in spinocerebellar ataxia type 2 and type 3?. Brain, 2015, 138, 3139-3140.	3.7	1
113	CNS infection with C. pneumoniae complicated by multiple strokes. Journal of Neurology, 2003, 250, 1128-1128.	1.8	0
114	Approach to the patient with ataxia. , 2005, , 699-708.		0
115	Ataxia. , 2008, , 405-415.		0
116	P1-223: Functional Markers for Cerebral Norepinephrine Deficiency in Alzheimer's Disease. , 2016, 12, P492-P493.		0
117	Teaching Neurolmages: Distinct visual anosognosia after serial lesions of Meyer loop and the lateral geniculate body. Neurology, 2018, 91, e94-e95.	1.5	0
118	Polychemotherapy in patients with primary CNS lymphoma Blood, 2004, 104, 3304-3304.	0.6	0
119	The Ratio of Expanded to Normal Ataxin 3 in Peripheral Blood Mononuclear Cells Correlates with the Age at Onset in Spinocerebellar Ataxia Type 3. Movement Disorders, 2022, 37, 1098-1099.	2.2	0
120	The clinical diagnosis of autosomal dominant spinocerebellar ataxias. Cerebellum, 2008, 7, 1-5.	1.4	0