
Gregory Engel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5621447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Annihilation of Excess Excitations along Phycocyanin Rods Precedes Downhill Flow to Allophycocyanin Cores in the Phycobilisome of <i>Synechococcus elongatus</i> PCC 7942. Journal of Physical Chemistry B, 2022, 126, 23-29.	1.2	4
2	Time-Domain Line-Shape Analysis from 2D Spectroscopy to Precisely Determine Hamiltonian Parameters for a Photosynthetic Complex. Journal of Physical Chemistry B, 2021, 125, 2812-2820.	1.2	5
3	Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
4	Sub-10 fs Intervalley Exciton Coupling in Monolayer MoS ₂ Revealed by Helicity-Resolved Two-Dimensional Electronic Spectroscopy. ACS Nano, 2021, 15, 10253-10263.	7.3	14
5	Spatial Patterns of Light-Harvesting Antenna Complex Arrangements Tune the Transfer-to-Trap Efficiency of Excitons in Purple Bacteria. Journal of Physical Chemistry Letters, 2021, 12, 6967-6973.	2.1	2
6	Quantum Biology: An Update and Perspective. Quantum Reports, 2021, 3, 80-126.	0.6	74
7	Redox conditions correlated with vibronic coupling modulate quantum beats in photosynthetic pigment–protein complexes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2112817118.	3.3	7
8	DNA scaffold supports long-lived vibronic coherence in an indodicarbocyanine (Cy5) dimer. Chemical Science, 2020, 11, 8546-8557.	3.7	28
9	Ultrafast Excitation Transfer in Cy5 DNA Photonic Wires Displays Dye Conjugation and Excitation Energy Dependency. Journal of Physical Chemistry Letters, 2020, 11, 4163-4172.	2.1	34
10	Evidence for the Dominance of Carrier-Induced Band Gap Renormalization over Biexciton Formation in Cryogenic Ultrafast Experiments on MoS ₂ Monolayers. Journal of Physical Chemistry Letters, 2020, 11, 2658-2666.	2.1	17
11	Leveraging scatter in two-dimensional spectroscopy: passive phase drift correction enables a global phasing protocol. Optics Express, 2020, 28, 32869.	1.7	2
12	Elucidation of near-resonance vibronic coherence lifetimes by nonadiabatic electronic-vibrational state character mixing. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18263-18268.	3.3	34
13	Quantum coherences reveal excited-state dynamics in biophysical systems. Nature Reviews Chemistry, 2019, 3, 477-490.	13.8	51
14	Orientational Dynamics of Transition Dipoles and Exciton Relaxation in LH2 from Ultrafast Two-Dimensional Anisotropy. Journal of Physical Chemistry Letters, 2019, 10, 270-277.	2.1	11
15	Dark states and delocalization: Competing effects of quantum coherence on the efficiency of light harvesting systems. Journal of Chemical Physics, 2018, 148, 064304.	1.2	18
16	Redox Conditions Affect Ultrafast Exciton Transport in Photosynthetic Pigment–Protein Complexes. Journal of Physical Chemistry Letters, 2018, 9, 89-95.	2.1	9
17	Correlated Protein Environments Drive Quantum Coherence Lifetimes in Photosynthetic Pigment-Protein Complexes. CheM, 2018, 4, 138-149.	5.8	45
18	Excitations Partition into Two Distinct Populations in Bulk Perovskites. Advanced Optical Materials, 2018, 6, 1700975.	3.6	8

#	Article	IF	CITATIONS
19	Disentanglement of excited-state dynamics with implications for FRET measurements: two-dimensional electronic spectroscopy of a BODIPY-functionalized cavitand. Chemical Science, 2018, 9, 3694-3703.	3.7	13
20	Double-excitation manifold's effect on exciton transfer dynamics and the efficiency of coherent light harvesting. Physical Chemistry Chemical Physics, 2018, 20, 30032-30040.	1.3	13
21	Origin of Broad Emission Spectra in InP Quantum Dots: Contributions from Structural and Electronic Disorder. Journal of the American Chemical Society, 2018, 140, 15791-15803.	6.6	123
22	Connecting bright and dark states through accidental degeneracy caused by lack of symmetry. Journal of Chemical Physics, 2018, 148, 204307.	1.2	6
23	Crystal structure of 4′-allyl-4,5,6,7,2′,7′-hexachlorofluorescein allyl ester unknown solvate. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 83-87.	0.2	Ο
24	Controlling quantum-beating signals in 2D electronic spectra by packing synthetic heterodimers on single-walled carbon nanotubes. Nature Chemistry, 2017, 9, 219-225.	6.6	38
25	Scalable Ligand-Mediated Transport Synthesis of Organic–Inorganic Hybrid Perovskite Nanocrystals with Resolved Electronic Structure and Ultrafast Dynamics. ACS Nano, 2017, 11, 2689-2696.	7.3	62
26	Modeling Ultrafast Exciton Migration within the Electron Donor Domains of Bulk Heterojunction Organic Photovoltaics. Journal of Physical Chemistry C, 2017, 121, 5467-5479.	1.5	2
27	Using coherence to enhance function in chemical and biophysical systems. Nature, 2017, 543, 647-656.	13.7	477
28	Communication: Broad manifold of excitonic states in light-harvesting complex 1 promotes efficient unidirectional energy transfer <i>in vivo</i> . Journal of Chemical Physics, 2017, 147, 131101.	1.2	13
29	Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells. Nature Communications, 2017, 8, 988.	5.8	44
30	Dark states enhance the photocell power via phononic dissipation. Physical Chemistry Chemical Physics, 2016, 18, 31845-31849.	1.3	13
31	Cysteine-mediated mechanism disrupts energy transfer to prevent photooxidation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8562-8564.	3.3	20
32	Optical Resonance Imaging: An Optical Analog to MRI with Subdiffraction-Limited Capabilities. ACS Photonics, 2016, 3, 2445-2452.	3.2	3
33	Bacteriophytochrome Photoisomerization Proceeds Homogeneously Despite Heterogeneity in Ground State. Biophysical Journal, 2016, 111, 2125-2134.	0.2	21
34	Electronic Structure and Dynamics of Higher-Lying Excited States in Light Harvesting Complex 1 from <i>Rhodobacter sphaeroides</i> . Journal of Physical Chemistry A, 2016, 120, 4124-4130.	1.1	15
35	Mutations to <i>R. sphaeroides</i> Reaction Center Perturb Energy Levels and Vibronic Coupling but Not Observed Energy Transfer Rates. Journal of Physical Chemistry A, 2016, 120, 1479-1487.	1.1	21
36	Communication: Coherences observed <i>in vivo</i> in photosynthetic bacteria using two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2015, 143, 101101.	1.2	26

#	Article	IF	CITATIONS
37	Delocalized quantum states enhance photocell efficiency. Physical Chemistry Chemical Physics, 2015, 17, 5743-5750.	1.3	49
38	Towards quantification of vibronic coupling in photosynthetic antenna complexes. Journal of Chemical Physics, 2015, 142, 212446.	1.2	25
39	Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets. ACS Nano, 2015, 9, 9475-9485.	7.3	240
40	Principles of multi-dimensional electronic spectroscopy. , 2014, , 82-120.		2
41	Direct observation of quantum coherence. , 2014, , 144-158.		5
42	Electron transfer in proteins. , 2014, , 198-217.		3
43	Quantum biology of retinal. , 2014, , 237-263.		4
44	Probing Delocalization in Photosynthetic Antenna Complexes with Femtosecond Chiral Two-Dimensional Spectroscopy. , 2014, , .		0
45	Ultrafast energy transfer from rigid, branched side-chains into a conjugated, alternating copolymer. Journal of Chemical Physics, 2014, 140, 034903.	1.2	4
46	Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2014, 140, 084701.	1.2	62
47	Response to Comment on "Engineering coherence among excited states in synthetic heterodimer systems― Science, 2014, 344, 1099-1099.	6.0	5
48	Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy. Nature Communications, 2014, 5, 3286.	5.8	65
49	Persistent Interexcitonic Quantum Coherence in CdSe Quantum Dots. Journal of Physical Chemistry Letters, 2014, 5, 196-204.	2.1	64
50	Coherent Transport and Energy Flow Patterns in Photosynthesis under Incoherent Excitation. Journal of Physical Chemistry B, 2014, 118, 2693-2702.	1.2	22
51	Dispersion-free continuum two-dimensional electronic spectrometer. Applied Optics, 2014, 53, 1909.	0.9	39
52	Energy Transfer Observed in Live Cells Using Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry Letters, 2013, 4, 3636-3640.	2.1	34
53	Engineering Coherence Among Excited States in Synthetic Heterodimer Systems. Science, 2013, 340, 1431-1434.	6.0	124
54	Independent phasing of rephasing and non-rephasing 2D electronic spectra. Journal of Chemical Physics, 2013, 139, 084201.	1.2	19

#	Article	IF	CITATIONS
55	Two-dimensional electronic spectroscopy of CdSe nanoparticles at very low pulse power. Journal of Chemical Physics, 2013, 138, 014705.	1.2	53
56	Time Scales of Coherent Dynamics in the Light-Harvesting Complex 2 (LH2) of <i>Rhodobacter sphaeroides</i> . Journal of Physical Chemistry Letters, 2013, 4, 1404-1409.	2.1	38
57	Nonlinear Spectroscopic Theory of Displaced Harmonic Oscillators with Differing Curvatures: A Correlation Function Approach. Journal of Physical Chemistry A, 2013, 117, 9444-9453.	1.1	27
58	Probing energy transfer events in the light harvesting complex 2 (LH2) of <i>Rhodobacter sphaeroides</i> with two-dimensional spectroscopy. Journal of Chemical Physics, 2013, 139, 155101.	1.2	29
59	The dependence of exciton transport efficiency on spatial patterns of correlation within the spectral bath. New Journal of Physics, 2013, 15, 095019.	1.2	14
60	Signatures of correlated excitonic dynamics in two-dimensional spectroscopy of the Fenna-Matthew-Olson photosynthetic complex. Journal of Chemical Physics, 2012, 136, 104505.	1.2	24
61	Inhomogeneous dephasing masks coherence lifetimes in ensemble measurements. Journal of Chemical Physics, 2012, 136, 164508.	1.2	31
62	Probing vibrational dynamics of PM650 with two-dimensional electronic spectroscopy. Chemical Physics, 2012, 403, 59-67.	0.9	14
63	Two-Dimensional Spectroscopy Can Distinguish between Decoherence and Dephasing of Zero-Quantum Coherences. Journal of Physical Chemistry A, 2012, 116, 282-289.	1.1	20
64	Two-dimensional electronic spectroscopy of bacteriochlorophyll <i>a</i> in solution: Elucidating the coherence dynamics of the Fenna-Matthews-Olson complex using its chromophore as a control. Journal of Chemical Physics, 2012, 137, 125101.	1.2	39
65	Measurement of electronic splitting in PbS quantum dots by two-dimensional nonlinear spectroscopy. Physical Review B, 2012, 86, .	1.1	44
66	Maximal Coherence at Room Temperature in the Bacterial Photosynthetic Reaction Center. Biophysical Journal, 2012, 102, 167a.	0.2	0
67	Excited and ground state vibrational dynamics revealed by two-dimensional electronic spectroscopy. Journal of Chemical Physics, 2012, 137, 024507.	1.2	38
68	Towards a coherent picture of excitonic coherence in the Fenna–Matthews–Olson complex. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 154013.	0.6	29
69	Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2). Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 706-711.	3.3	173
70	Peak shape analysis of diagonal and off-diagonal features in the two-dimensional electronic spectra of the Fenna–Matthews–Olson complex. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 3692-3708.	1.6	10
71	Robustness of electronic coherence in the Fenna–Matthews–Olson complex to vibronic and structural modifications. Faraday Discussions, 2011, 150, 459.	1.6	58
72	Extracting dynamics of excitonic coherences in congested spectra of photosynthetic light harvesting antenna complexes. Faraday Discussions, 2011, 153, 93.	1.6	29

#	Article	IF	CITATIONS
73	Single-Shot Gradient-Assisted Photon Echo Electronic Spectroscopy. Journal of Physical Chemistry A, 2011, 115, 3787-3796.	1.1	65
74	Extracting the Excitonic Hamiltonian of the Fenna-Matthews-Olson Complex Using Three-Dimensional Third-Order Electronic Spectroscopy. Biophysical Journal, 2011, 100, 2043-2052.	0.2	72
75	Single-shot ultrabroadband two-dimensional electronic spectroscopy of the light-harvesting complex LH2. Optics Letters, 2011, 36, 1665.	1.7	33
76	Quantum coherence in photosynthesis. Procedia Chemistry, 2011, 3, 222-231.	0.7	32
77	Direct evidence of quantum transport in photosynthetic light-harvesting complexes. Proceedings of the United States of America, 2011, 108, 20908-20912.	3.3	203
78	Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16444-16447.	3.3	92
79	Dynamics of electronic dephasing in the Fenna–Matthews–Olson complex. New Journal of Physics, 2010, 12, 065042.	1.2	50
80	Kinetic oxygen isotope effects during dissimilatory sulfate reduction: A combined theoretical and experimental approach. Geochimica Et Cosmochimica Acta, 2010, 74, 2011-2024.	1.6	89
81	Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12766-12770.	3.3	886
82	Dissecting Hidden Couplings Using Fifth-Order Three-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 2876-2880.	2.1	52
83	A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere. Review of Scientific Instruments, 2009, 80, 044102.	0.6	87
84	Pigment Organization and Energy Level Structure in Light-Harvesting Complex 4: Insights from Two-Dimensional Electronic Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 6495-6504.	1.2	23
85	Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy. Applied Physics B: Lasers and Optics, 2008, 92, 467.	1.1	102
86	Visualization of Excitonic Structure in the Fenna-Matthews-Olson Photosynthetic Complex by Polarization-Dependent Two-Dimensional Electronic Spectroscopy. Biophysical Journal, 2008, 95, 847-856.	0.2	108
87	Cross-peak-specific two-dimensional electronic spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14203-14208.	3.3	137
88	Precise multipass Herriott cell design: Derivation of controlling design equations. Optics Letters, 2007, 32, 704.	1.7	19
89	Elucidation of population and coherence dynamics using cross-peaks in two-dimensional electronic spectroscopy. Chemical Physics, 2007, 341, 285-295.	0.9	65
90	Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature, 2007, 446, 782-786.	13.7	2,685

#	Article	IF	CITATIONS
91	Two-dimensional Electronic Spectroscopy of Photosynthetic Light-Harvesting Complexes. , 2007, , .		0
92	Biomimetic Fabrication of 3D Structures by Spontaneous Folding of Tapes. Journal of the American Chemical Society, 2006, 128, 9314-9315.	6.6	9
93	Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 157 μm: new sensitivity limits for absorption measurements in passive optical cavities. Applied Optics, 2006, 45, 9221.	2.1	86
94	Analysis by Capillary Electrophoresis of the Kinetics of Charge Ladder Formation for Bovine Carbonic Anhydrase. Analytical Chemistry, 2002, 74, 1870-1878.	3.2	13
95	Superficially porous silica microspheres for fast high-performance liquid chromatography of macromolecules. Journal of Chromatography A, 2000, 890, 3-13.	1.8	237
96	Quantum biology: introduction. , 0, , 3-13.		0
97	Generalized Förster resonance energy transfer. , 0, , 53-81.		0
98	Coherent excitons in carbon nanotubes. , 0, , 335-349.		0
99	Leveraging Dynamical Symmetries in Two-Dimensional Electronic Spectra to Extract Population Transfer Pathways. Journal of Physical Chemistry A, 0, , .	1.1	3
100	Quantum Coherence in Chemical and Photobiological Systems. ACS Symposium Series, 0, , 411-436.	0.5	1