
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5620815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New wide band gap π-conjugated copolymers based on anthra[1,2-b: 4,3-b': 6,7-c''] trithiophene-8,12-dione for high performance non-fullerene polymer solar cells with an efficiency of 15.07 %. Polymer, 2022, 251, 124892.	3.8	6
2	New Random Terpolymers Based on Bis(4,5-didodecylthiophen-2-yl)-[1,2,5]thiadiazolo[3,4-i]dithieno[3,2-a:2',3'-c]phenazine with Variable Absorption Spectrum as Promising Materials for Organic Solar Cells. Doklady Physical Chemistry, 2021, 496, 1-7.	0.9	1
3	Highâ€Performance Fullerene Free Polymer Solar Cells Based on New Thiazole â€Functionalized Benzo[1,2â€b:4,5â€b′]dithiophene Dâ€A Copolymer Donors. ChemistrySelect, 2021, 6, 7025-7036.	1.5	1
4	New benzodithiophene-pyrrolopyrroledione-thienopyrazine random terpolymers for organic photovoltaics. Mendeleev Communications, 2021, 31, 800-803.	1.6	4
5	Polycondensation in supercritical carbon dioxide: a contribution from the A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences. Russian Chemical Bulletin, 2020, 69, 1035-1053.	1.5	3
6	Synthesis and Characterization of Wideâ€Bandgap Conjugated Polymers Consisting of Same Electron Donor and Different Electronâ€Deficient Units and Their Application for Nonfullerene Polymer Solar Cells. Macromolecular Chemistry and Physics, 2020, 221, 2000030.	2.2	8
7	New Donor–Acceptor Random Terpolymers with Wide Absorption Spectra of 300–1000 nm for Photovoltaic Applications. Doklady Physical Chemistry, 2020, 495, 196-200.	0.9	1
8	Conjugated random terpolymers based on benzodithiophene, diketopyrrolopyrrole, and 8,10â€bis(thiophenâ€2â€yl)â€2,5â€di(nonadecanâ€3â€yl)bis[1,3]thiazolo[4,5â€f :5′,4′―h]thieno[3,4â€ Efficient Polymer Solar Cell. Journal of Polymer Science Part A, 2019, 57, 1478-1485.	•b2.]3quino>	a b ine for
9	New 4,5-Diaza-9,9'-spirobifluorene Derivative—A Promising Electron Acceptor for Nonfullerene Polymer Solar Cells. Doklady Chemistry, 2019, 485, 95-99.	0.9	5
10	Random D1–A1–D1–A2 terpolymers based on diketopyrrolopyrrole and benzothiadiazolequinoxaline (BTQx) derivatives for high-performance polymer solar cells. New Journal of Chemistry, 2019, 43, 5325-5334.	2.8	9
11	Electrochromic behavior of films and «smart windows» prototypes based on π-conjugated and non–conjugated poly(pyridinium triflate)s. Synthetic Metals, 2019, 248, 14-19.	3.9	10
12	New indolo carbazole-based non-fullerene n-type semiconductors for organic solar cell applications. Journal of Materials Chemistry C, 2019, 7, 543-552.	5.5	26
13	Synthesis and photovoltaic properties of new Dâ \in A copolymers based on 5,6â \in bis(2â \in ethylhexyl)naphtha[2,1â \in b:3,4â \in bâ \in 2]dithiopheneâ \in 2,9â \in diyl] donor and fluorine substituted 6,7â \in bis(9,9â \in didodecylâ \in 9hâ \in fluorena \in 2â \in yl)[1,2,5] thiadiazolo[3,4â \in g]quinoxaline acceptor units. Journal of Polymer Science Part A, 2018, 56, 1297-1307.	2.3	2
14	Polymer solar cells based on D–A low bandgap copolymers containing fluorinated side chains of thiadiazoloquinoxaline acceptor and benzodithiophene donor units. New Journal of Chemistry, 2018, 42, 1626-1633.	2.8	8
15	Electrochromic behavior of poly(pyridinium triflates) films: Electrolyte ions influence. Synthetic Metals, 2018, 239, 29-35.	3.9	9
16	Fast switching electrochromic nanocomposite based on Poly(pyridinium salt) and multiwalled carbon nanotubes. Electrochimica Acta, 2018, 260, 139-149.	5.2	13
17	Dithienosilole–phenylquinoxalineâ€based copolymers with Aâ€Dâ€Aâ€D and Aâ€D structures for polymer solar cells. Journal of Polymer Science Part A, 2018, 56, 376-386.	2.3	6
18	New iridium-containing conjugated polymers for polymer solar cell applications. New Journal of Chemistry, 2018, 42, 17296-17302.	2.8	9

#	Article	IF	CITATIONS
19	5,6-Bis(9-(2-decyltetradecyl)-6-fluoro-9H-carbazol-3-yl)naphtho[2,1-b:3,4-b']dithiophene as a Promising Donor Structure for D–A Conjugated Copolymers with a Narrow Bandgap. Doklady Chemistry, 2018, 482, 213-219.	0.9	0
20	Bis[1,3]thiazolo[4,5-f:5',4'-h]thieno[3,4-b]quinoxaline Derivatives as New Building Blocks of Polymers for Organic Electronics. Doklady Chemistry, 2018, 482, 207-211.	0.9	3
21	New Quinoxaline-Containing Monomers for Narrow-Bandgap Polymers. Doklady Chemistry, 2018, 482, 195-200.	0.9	2
22	Opto-Electrical Properties of Composite Materials Based on Two Benzotrithiophene Copolymers and Fullerene Derivatives. Journal of Nanomaterials, 2018, 2018, 1-9.	2.7	1
23	Synthesis, characterization and photovoltaic properties of new iridium-containing conjugated polymers. AIP Conference Proceedings, 2018, , .	0.4	0
24	Synthesis and photovoltaic properties low bandgap D-A copolymers based on fluorinated thiadiazoloquinoxaline. Organic Electronics, 2017, 43, 268-276.	2.6	6
25	Small molecule carbazole-based diketopyrrolopyrroles with tetracyanobutadiene acceptor unit as a non-fullerene acceptor for bulk heterojunction organic solar cells. Journal of Materials Chemistry A, 2017, 5, 3311-3319.	10.3	51
26	Polymer solar cells based low bandgap A1-D-A2-D terpolymer based on fluorinated thiadiazoloquinoxaline and benzothiadiazole acceptors with energy loss less than 0.5ÂeV. Organic Electronics, 2017, 46, 192-202.	2.6	11
27	New monomer based on thienopyrazine with fluorocarbazole substituents as a promising building block for organic electronics. Doklady Chemistry, 2017, 472, 25-29.	0.9	2
28	Tuning the optoelectronic properties for high-efficiency (>7.5%) all small molecule and fullerene-free solar cells. Journal of Materials Chemistry A, 2017, 5, 14259-14269.	10.3	34
29	Efficient Polymer Solar Cells with High Open-Circuit Voltage Containing Diketopyrrolopyrrole-Based Non-Fullerene Acceptor Core End-Capped with Rhodanine Units. ACS Applied Materials & Interfaces, 2017, 9, 11739-11748.	8.0	43
30	Benzothiadiazole-pyrrolo[3,4-b]dithieno[2,3-f:3′,2′-h]quinoxalindione-based random terpolymer incorporating strong and weak electron accepting [1,2,5]thiadiazolo[3,4g]quinoxalinefor polymer solar cells. Organic Electronics, 2017, 41, 1-8.	2.6	5
31	Regular conjugated D–A copolymer containing two benzotriazole and benzothiadiazole acceptors and dithienosilole donor units for photovoltaic application. RSC Advances, 2017, 7, 49204-49214.	3.6	5
32	Synthesis of new 2,6-bis(6-fluoro-2-hexyl-2H-benzotriazol-4-yl)-4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene based D-A conjugated terpolymers for photovoltaic application. Polymer, 2017, 133, 195-204.	3.8	4
33	Donor–acceptor–acceptor (D–A–A) type 1,8-naphthalimides as non-fullerene small molecule acceptors for bulk heterojunction solar cells. Chemical Science, 2017, 8, 2017-2024.	7.4	65
34	Design, synthesis and photophysical properties of D1-A-D2-A-D1-type small molecules based on fluorobenzotriazole acceptor and dithienosilole core donor for solution processed organic solar cells. Dyes and Pigments, 2016, 132, 387-397.	3.7	7
35	Synthesis and optical and electrochemical properties of 5,6-bis[9-(2-decyltetradecyl)-9H-carbazol-3-yl]naphtho[2,1-b:3,4-b']dithiophene as a promising building block for photovoltaic applications. Doklady Chemistry, 2016, 467, 94-99.	0.9	1
36	New alternating D–A ₁ –D–A ₂ copolymer containing two electronâ€deficient moieties based on benzothiadiazole and 9â€(2â€Octyldodecyl)â€8 <i>H</i> â€pyrrolo[3 4â€ <i>b</i> li>lbisthieno[2 3â€ <i>f</i>) ³ 2'â€ <i>b</i>)	neâ€ 8 . ⁹ ∩(9	<i>10 (i>H</i>)â€d

for efficient polymer solar cells. Journal of Polymer Science Part A, 2016, 54, 155-168.

#	Article	IF	CITATIONS
37	Electrochromism of interpolyelectrolyte poly(pyridinium) – Poly(styrene sulfonate) complexes. Organic Electronics, 2016, 34, 1-11.	2.6	7
38	Synthesis of alternating D–A1–D–A2 terpolymers comprising two electron-deficient moieties, quinoxaline and benzothiadiazole units for photovoltaic applications. Polymer Chemistry, 2016, 7, 4025-4035.	3.9	11
39	Synthesis and photophysical properties of semiconductor molecules of D1–A–D2–A–D1 structure on the basis of quinoxaline and dithienosilole derivatives for organic solar cells. Doklady Physical Chemistry, 2016, 469, 106-110.	0.9	1
40	Novel regular D–A-conjugated polymers based on 2,6-bis(6-fluoro-2-hexyl-2H-benzotriazol-4-yl)-4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-bâ€2]dithiophene derivatives: Synthesis, optoelectronic, and electrochemical properties. Doklady Chemistry, 2016, 470, 274-278.	0.9	2
41	Symmetrical and unsymmetrical triphenylamine based diketopyrrolopyrroles and their use as donors for solution processed bulk heterojunction organic solar cells. RSC Advances, 2016, 6, 99685-99694.	3.6	17
42	Cross-Linkable Hole-Transport Materials Improve the Device Performance of Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 27006-27011.	8.0	41
43	New ultra low bandgap thiadiazolequinoxaline-based D-A copolymers for photovoltaic applications. Organic Electronics, 2016, 37, 411-420.	2.6	2
44	Synthesis and photophysical properties of regioregular low bandgap copolymers with controlled 5-fluorobenzotriazole orientation for photovoltaic application. Polymer Chemistry, 2016, 7, 5849-5861.	3.9	11
45	New D-A1–D-A2-Type Regular Terpolymers Containing Benzothiadiazole and Benzotrithiophene Acceptor Units for Photovoltaic Application. ACS Applied Materials & Interfaces, 2016, 8, 32998-33009.	8.0	18
46	New electron-accepting quinoxalinothiadiazole-containing heterocycles as promising building blocks for organic optoelectronic devices. Doklady Chemistry, 2016, 468, 202-207.	0.9	5
47	Synthesis of new D-A1–D-A2 type low bandgap terpolymers based on different thiadiazoloquinoxaline acceptor units for efficient polymer solar cells. RSC Advances, 2016, 6, 71232-71244.	3.6	11
48	New donor–acceptor copolymers with ultra-narrow band gap for photovoltaic application. Doklady Chemistry, 2016, 470, 283-288.	0.9	2
49	Synthesis and photophysical properties of semiconductor molecules D1-A-D2-A-D1-type structure based on derivatives of quinoxaline and dithienosilole for organics solar cells. Organic Electronics, 2016, 39, 361-370.	2.6	3
50	New narrow-band-gap thiazoloquinoxaline-containing polymers and their use in solar cells with bulk heterojunction. Doklady Chemistry, 2016, 471, 373-377.	0.9	1
51	Design and synthesis of new ultra-low band gap thiadiazoloquinoxaline-based polymers for near-infrared organic photovoltaic application. RSC Advances, 2016, 6, 14893-14908.	3.6	26
52	1,1,4,4-Tetracyanobuta-1,3-diene Substituted Diketopyrrolopyrroles: An Acceptor for Solution Processable Organic Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2016, 120, 6324-6335.	3.1	61
53	New low bandgap near-IR conjugated D–A copolymers for BHJ polymer solar cell applications. Physical Chemistry Chemical Physics, 2016, 18, 8389-8400.	2.8	18
54	A New D-A conjugated polymer P(PTQD-BDT) with PTQD acceptor and BDT donor units for BHJ polymer solar cells application. Journal of Polymer Science Part A, 2015, 53, 2390-2398.	2.3	10

#	Article	IF	CITATIONS
55	Synthesis and photovoltaic properties of thieno[3,4- <i>b</i>]pyrazine or dithieno[3′,2′:3,4;2″,3″:5,6]benzo[1,2- <i>d</i>]imidazole-containing conjugated polymers. Journal of Polymer Science Part A, 2015, 53, 1067-1075.	2.3	9
56	Two new D–A conjugated polymers P(PTQD-Th) and P(PTQD-2Th) with same 9-(2-octyldodecyl)-8 H -pyrrolo[3,4- b]bisthieno[2,3- f :3′,2′- h]quinoxaline-8,10(9 H)-dione acceptor and different donor units for BHJ polymer solar cells application. Organic Electronics, 2015, 24, 137-146.	2.6	6
57	Novel low-band-gap conjugated polymers based on benzotrithiophene derivatives for bulk heterojunction solar cells. Doklady Chemistry, 2015, 464, 231-235.	0.9	5
58	Synthesis and characterization of ï€-conjugated copolymers with thieno-imidazole units in the main chain: application for bulk heterojunction polymer solar cells. Physical Chemistry Chemical Physics, 2015, 17, 7888-7897.	2.8	6
59	Efficient solar cells based on a new polymer from fluorinated benzothiadiazole and alkylthienyl substituted thieno[2,3- f]benzofuran. Dyes and Pigments, 2015, 116, 139-145.	3.7	14
60	New thienofluoroanthenes as building blocks for optoelectronic applications. Doklady Chemistry, 2015, 461, 75-80.	0.9	0
61	Synthesis and characterization of two new benzothiadiazole- andÂfused bithiophene based low band-gap D–A copolymers: Application as donor bulk heterojunction polymer solar cells. Polymer, 2015, 65, 193-201.	3.8	16
62	New fused thiophene derivatives as promising building blocks for optoelectronic devices. Doklady Chemistry, 2015, 460, 50-56.	0.9	0
63	Synthesis of new symmetrical carbazole- and fluorene-containing α-diketones. Doklady Chemistry, 2015, 463, 215-220.	0.9	2
64	Synthesis, optical and electrochemical properties new donor–acceptor (D–A) copolymers based on benzo[1,2-b:3,4-b′:6,5-b″] trithiophene donor and different acceptor units: Application as donor for photovoltaic devices. Organic Electronics, 2015, 17, 167-177.	2.6	9
65	Dissolution, fractionating and functionalization of ultradispersed polytetrafluorethylene in supercritical carbon dioxide. , 2014, , .		0
66	New donor-acceptor benzotrithiophene-containing conjugated polymers for solar cells. AIP Conference Proceedings, 2014, , .	0.4	2
67	The effect of poly(N-vinylcaprolactam) on the electrochromic properties of a poly(pyridinium) Tj ETQq1 1 0.78431	4_rgBT /O 5.2	verlock 10
68	Synthesis and optoelectronic properties of conjugated phosphorescent copolyfluorenes containing iridium complexes in main chains and light-emitting diodes formed on their basis. Polymer Science - Series B, 2014, 56, 77-88.	0.8	2
69	New narrow-band-gap conjugated copolymers based on benzodithiophene: Synthesis and photovoltaic properties. Polymer Science - Series B, 2014, 56, 89-108.	0.8	2
70	New ï€-conjugated electroluminescent polymers containing organoiridium quinolinolate complexes in the backbone and light diodes formed on their basis. Polymer Science - Series B, 2014, 56, 198-206.	0.8	1
71	New donor-acceptor benzotrithiophene-containing conjugated polymers for solar cells. Doklady Chemistry, 2014, 454, 25-31.	0.9	1
72	New conjugated alternating benzodithiophene-containing copolymers with different acceptor units: synthesis and photovoltaic application. Journal of Materials Chemistry A, 2014, 2, 155-171.	10.3	55

#	Article	IF	CITATIONS
73	Improved power conversion efficiency by insertion of RGO–TiO2 composite layer as optical spacer in polymer bulk heterojunction solar cells. Organic Electronics, 2014, 15, 348-355.	2.6	21
74	Synthesis and photovoltaic properties of new donor–acceptor (D–A) copolymers based on benzo[1,2-b:3,4-b′:6,5-b′′] trithiophene donor and different acceptor units (P1 and P2). RSC Advances, 20 4, 53531-53542.	03:46,	5
75	Thienopyrazine or dithiadiazatrindene containing low band gap conjugated polymers for polymer solar cells. Chinese Journal of Polymer Science (English Edition), 2014, 32, 844-853.	3.8	19
76	Novel electron-withdrawing π-conjugated pyrene-containing poly(phenylquinoxaline)s. Doklady Chemistry, 2014, 456, 65-71.	0.9	8
77	New conjugated electroluminescent triphenylamine-containing polymers with side-chain pyridin-2-ylimidazo[1,5-a]pyridine groups for polymer light-emitting diodes. Doklady Chemistry, 2013, 450, 165-172.	0.9	1
78	Synthesis and photovoltaic properties of new donor-acceptor benzodithiophene-containing copolymers. Polymer Science - Series B, 2013, 55, 360-372.	0.8	6
79	New donor–acceptor conjugated polymers based on benzo[1,2-b:4,5-b′]dithiophene for photovoltaic cells. Synthetic Metals, 2013, 166, 7-13.	3.9	11
80	Synthesis of aromatic poly(pyridinium salt)s and their electrochromic properties. Materials Chemistry and Physics, 2013, 139, 936-943.	4.0	16
81	Synthesis and properties of conjugated fluoroalkyl ether-substituted polythiophenes prepared in organic solvent and supercritical carbon dioxide. Polymer Science - Series B, 2013, 55, 81-87.	0.8	1
82	Synthesis and characterization of a low band gap quinoxaline based D–A copolymer and its application as a donor for bulk heterojunction polymer solar cells. Polymer Chemistry, 2013, 4, 4033.	3.9	33
83	Synthesis of new conjugated copolymers containing 4,8-bis(dodecyloxy)benzo[1,2-b:4,5-bâ€ ²]dithiophene/5,7-bis(3,4-diethylthien-2-yl)-2,3-diphenylthieno[3,4-b]pyraz and 4,8-bis(dodecyloxy)benzo[1,2-b:4,5-bâ€ ²]dithiophene/4,6-di(3,4-diethylthien-2-yl)-thieno[3,4-c][1,2,5]thiadiazole	zine 0.8	0
84	New polyimide-polyoxometalate nanocomposite materials with nanoporous structure and ultra-low dielectric constant, formed in supercritical carbon dioxide. , 2012, , .		2
85	Conjugated silicon- and germanium-containing polyfluoreneethynylenes synthesized in supercritical carbon dioxide. Doklady Chemistry, 2012, 445, 143-149.	0.9	1
86	Development of new polymers with ultra-low dielectric constant using gaseous CO2. , 2012, , .		0
87	New photo- and electroluminescent conjugated copolyfluorenes with 7,8,10-triarylfluoranthene units in the backbone. Polymer Science - Series B, 2012, 54, 289-296.	0.8	2
88	Photoluminescent phenylated polyfluorenes synthesized in an organic solvent and supercritical carbon dioxide. Polymer Science - Series B, 2012, 54, 106-114.	0.8	3
89	Synthesis of n-type conjugated polymers for bulk heterojunction solar cells. Polymer Science - Series B, 2012, 54, 183-192.	0.8	2
90	Synthesis and photo- and electrophysical properties of conjugated copolyfluorenes with 7,8,10-triarylfluoranthene fragments in the main chain. Doklady Chemistry, 2012, 442, 23-29.	0.9	2

Микнамед Кезнтол

#	Article	IF	CITATIONS
91	Synthesis and photophysical properties of novel conjugated polymers with 4,5-diaza-9,9′-spirobifluorene fragments in the main chain. Doklady Chemistry, 2012, 442, 50-56.	0.9	4
92	Conjugated poly(fluoroalkyl 3-thienylacetate)s synthesized in supercritical carbon dioxide. Doklady Chemistry, 2012, 443, 101-106.	0.9	2
93	Fluorinated phenylated polyphenylenes with nanoporous structures and ultralow dielectric constants formed in supercritical carbon dioxide. Polymer Science - Series B, 2012, 54, 275-288.	0.8	2
94	Novel bipolar carbazole-containing polyphenylquinoxalines: Synthesis and photophysical properties. Doklady Chemistry, 2011, 436, 39-42.	0.9	3
95	New bipolar copolyfluorenes: Synthesis and photo- and electroluminescent properties. Doklady Chemistry, 2011, 439, 175-180.	0.9	8
96	New conjugated copolymers based on perylenediimide as electron-acceptor materials for polymeric solar cells. Doklady Chemistry, 2011, 440, 257-262.	0.9	3
97	New phenyl-substituted polyphenylenes with a nanoporous structure and ultralow dielectric constants formed in supercritical carbon dioxide. Doklady Physical Chemistry, 2011, 437, 68-71.	0.9	0
98	Synthesis, photophysical, and electrochromic properties of new triarylamino-containing polyphenylquinoxalines. Polymer Science - Series B, 2011, 53, 257-266.	0.8	6
99	New conjugated polyfluorenes carrying main-chain bipyridyl fragments as efficient fluorescent chemosensors for transition-metal ions. Polymer Science - Series B, 2011, 53, 345-351.	0.8	5
100	New π-conjugated polymers based on N-(4-(3,5-bis(4-bromophenyl)-[1,2,4]triazol-4-yl)-phenyl)carbazole: Synthesis and photoluminescent, electroluminescent, and electrochromic properties. Polymer Science - Series B, 2011, 53, 634-644.	0.8	3
101	Synthesis and properties of new functionalized poly(imides) based on 1,1-bis(4-aminophenyl)-1-z{4′-bis(4′'-bromophenyl)amino}phenyl-2,2,2-trifluoroethane. Polymer Science Series B, 2010, 52, 600-608.	2-0.8	4
102	New photoluminescent phenylated polyfluorenes. Polymer Science - Series B, 2010, 52, 656-661.	0.8	2
103	New electyroluminescent phenyl-subsituted polyfluorenes synthesized in supercritical carbon dioxide. Doklady Chemistry, 2010, 432, 159-164.	0.9	9
104	New perfluorinated 2′,2′-dipyrimidinylalkanes. Doklady Chemistry, 2010, 433, 191-193.	0.9	0
105	Now electrochromic polyphenylquinoxalines. Doklady Chemistry, 2010, 435, 297-301.	0.9	1
106	10.1007/s11498-008-1004-4., 2010, 50, 18.		0
107	Novel fluorine-containing bis(tetraarylcyclopentadienones). Doklady Chemistry, 2009, 429, 277-282.	0.9	3
108	New conjugated poly(aryleneethynylenes) with main-chain photochromic units. Polymer Science - Series B, 2009, 51, 335-343.	0.8	1

#	Article	IF	CITATIONS
109	New electrochromic polymeric pyridinium salts. Polymer Science - Series B, 2009, 51, 471-482.	0.8	0
110	New phenylated polyphenylenes carrying main-chain bipyridyl groups and their complexes with metal ions. Polymer Science - Series C, 2009, 51, 17-25.	1.7	4
111	Photochromic silicon polymers based on 1,2-dihetarylethenes. Polymer Science - Series C, 2009, 51, 51-56.	1.7	4
112	Influence of the concentrations of the components and preparation procedures on the relaxation transitions in blends of polyvinyl chloride with butadiene-acrylonitrile elastomers. Russian Journal of Applied Chemistry, 2008, 81, 1027-1032.	0.5	1
113	New proton-conducting phenyl-substituted polyphenylenes with phosphonate groups in side chain. Polymer Science - Series B, 2008, 50, 88-92.	0.8	2
114	Synthesis and photophysical properties of polyphenylquinoxalines with thiophene and benzothiophene units in side chains. Polymer Science - Series A, 2008, 50, 18-24.	1.0	3
115	Photochromic silicone polymers based on 1,2-dihetarylethenes. Arkivoc, 2008, 2008, 112-119.	0.5	2
116	Synthesis and spectral characteristics of novel bis(tetraarylcyclopentadienones). Doklady Chemistry, 2007, 412, 14-17.	0.9	3
117	Synthesis and photophysical properties of photochromic phenyl-substituted polyphenylenes with main-chain azobenzene fragments. Polymer Science - Series A, 2007, 49, 176-182.	1.0	2
118	Synthesis and photophysical properties of polyphenylquinoxalines with thiophene and dibenzothiophene units in the backbone. Polymer Science - Series B, 2007, 49, 75-79.	0.8	4
119	Transport properties of poly(phenylquinoxalines) containing heterocyclic moieties. Polymer Science - Series B, 2007, 49, 247-252.	0.8	1
120	Condensation metallosupramolecular polymers containing main-chain 2,2′-bipyridine and 2,2′:6′,2″-terpyridine moieties. Polymer Science - Series B, 2007, 49, 267-281.	0.8	4
121	New photochromic polymers. Polymer Science - Series B, 2006, 48, 18-22.	0.8	4
122	Biomimetic condensation copolyesters. Polymer Science - Series A, 2006, 48, 773-778.	1.0	0
123	New carbazole-containing polyphenylquinoxalines: Synthesis, photophysical, and electroluminescent properties. Polymer Science - Series A, 2006, 48, 1135-1146.	1.0	4
124	New hexaarylbenzene-containing di- and tetrafluoroarenes. Russian Chemical Bulletin, 2005, 54, 1939-1941.	1.5	3
125	Synthesis and Polymeranalogous Transformations of New Functionalized Polyheteroarylenes. High Performance Polymers, 2005, 17, 449-465.	1.8	5
126	New Activated Difluoroaromatic Compounds Containing Internal Acetylenic Moieties. Russian Journal of General Chemistry, 2003, 73, 1110-1113.	0.8	0

#	Article	IF	CITATIONS
127	Synthesis and Reactivity of Difluoroaromatic Compounds Containing Heterocyclic Central Groups. Russian Journal of General Chemistry, 2003, 73, 1476-1480.	0.8	1
128	New monomers and polymers via Diels-Alder cycloaddition. Macromolecular Symposia, 2003, 199, 97-108.	0.7	10
129	Photomechanical effects in Langmuir monolayers from polymers containing azobenzene groups. Mendeleev Communications, 2002, 12, 216-217.	1.6	0
130	Title is missing!. Russian Chemical Bulletin, 2002, 51, 117-123.	1.5	1
131	Activated bis- and tetrafluoroaromatic compounds containing bis-phenylquinoxaline fragments. Russian Chemical Bulletin, 2002, 51, 1039-1041.	1.5	2
132	New Synthetic Approach to the Preparation of Polyphenyleneethynylenes and Polyheteroaryleneethynylenes. High Performance Polymers, 2001, 13, S153-S168.	1.8	5
133	2,5-diphenyl-3,4-bis[p-(phenylethynyl)phenyl]cyclopentadienone and product of its Diels-Alder homocondensation. Russian Chemical Bulletin, 1999, 48, 944-948.	1.5	3
134	Novel aromatic tetracarboxylic acid dianhydrides. Russian Chemical Bulletin, 1999, 48, 1942-1945.	1.5	4
135	Evaluation of the reactivity of new activated difluoroaromatic compounds. Russian Chemical Bulletin, 1998, 47, 602-603.	1.5	0
136	New bis-tetraarylcyclopentadienones. Russian Chemical Bulletin, 1998, 47, 318-320.	1.5	4
137	Improved synthesis of bis[p-(phenylethynyl)phenyl]hetarylenes. Russian Chemical Bulletin, 1997, 46, 1794-1796.	1.5	1
138	New activated bisfluoroaromatic compounds. Russian Chemical Bulletin, 1997, 46, 777-779.	1.5	2
139	Synthesis of new bis[p-(phenylethynyl)phenyl]hetarylenes and bis[p-(phenylglyoxalyl)phenyl]hetarylenes. Russian Chemical Bulletin, 1996, 45, 2240-2242.	1.5	1
140	Synthesis of new aryl and hetaryl dibromides and diiodides, the monomers for preparation of polyarylene ethynylenes. Russian Chemical Bulletin, 1996, 45, 1169-1175.	1.5	4
141	Synthesis of new 4,4?-bis(arylethynyl)benzophenones and 4,4?-bis(arylglyoxalyl)benzophenones based on chloral. Russian Chemical Bulletin, 1996, 45, 630-632.	1.5	1
142	Synthesis of 4,4?-bis(4-aminophenoxy)benzophenone and polyimides based on this compound. Russian Chemical Bulletin, 1996, 45, 633-636.	1.5	1
143	Effect of the reactivity of diacid chlorides and diols on the microstructure of copolyesters. Polymer Science USSR, 1988, 30, 36-43.	0.2	2
144	On the principle of equal reactivity in solution polycondensation. Die Makromolekulare Chemie, 1983, 184, 105-111.	1.1	22

#	Article	IF	CITATIONS
145	Complex formation by phenols with tertiary amines in aprotic media. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1980, 29, 1906-1909.	0.0	0