Cheol-Hong Cheon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5620543/publications.pdf

Version: 2024-02-01

60 papers 1,937 citations

279487
23
h-index

²⁶⁴⁸⁹⁴
42
g-index

74 all docs

74 docs citations

74 times ranked 2294 citing authors

#	Article	IF	CITATIONS
1	Total Synthesis of Rucaparib. Journal of Organic Chemistry, 2022, 87, 4813-4817.	1.7	11
2	Precisely Localized Bone Regeneration Mediated by Marineâ€Derived Microdroplets with Superior BMPâ€⊋ Binding Affinity. Small, 2022, 18, e2200416.	5.2	8
3	Remarkable Differences in Reactivity between Cyanide and Nâ€Heterocyclic Carbene <scp>s < /scp> in <scp>Ringâ€Closing < /scp> Reactions of 4â€(<scp>2â€Formylphenoxy < /scp>) butâ€2â€Enoate Derivatives. Bulle of the Korean Chemical Society, 2021, 42, 483-485.</scp></scp></scp>	tin 1. 0	1
4	Real-Time Reaction Monitoring with In Operando Flow NMR and FTIR Spectroscopy: Reaction Mechanism of Benzoxazole Synthesis. Analytical Chemistry, 2021, 93, 2106-2113.	3.2	17
5	Total Synthesis of Hinckdentine A. Organic Letters, 2021, 23, 2169-2173.	2.4	27
6	A Stereodivergent Strategy for Total Syntheses of Antirhine Alkaloids. Journal of Organic Chemistry, 2021, 86, 4497-4511.	1.7	1
7	Synthesis of 2â€6ubstituted Tryptamines via Cyanideâ€Catalyzed Iminoâ€6tetter Reaction. Asian Journal of Organic Chemistry, 2020, 9, 2103-2107.	1.3	3
8	Crystalline/Amorphous Ni ₂ P/Ho ₂ O ₃ Core/Shell Nanoparticles for Electrochemical Reduction of CO ₂ to Acetone. ACS Applied Energy Materials, 2020, 3, 11516-11522.	2.5	15
9	Atroposelective Total Syntheses of Naphthylisoquinoline Alkaloids with (<i>P</i>)-Configuration. Journal of Organic Chemistry, 2020, 85, 12770-12776.	1.7	5
10	Asymmetric Total Syntheses of Naphthylisoquinoline Alkaloids via Atroposelective Coupling Reaction Using Central Chirality as Atroposelectivity-Controlling Group. Organic Letters, 2020, 22, 4653-4658.	2.4	12
11	General Strategy for the Synthesis of Antirhine Alkaloids: Divergent Total Syntheses of $(\hat{A}\pm)$ -Antirhine, $(\hat{A}\pm)$ -18,19-Dihydroantirhine, and Their 20-Epimers. Organic Letters, 2020, 22, 2354-2358.	2.4	12
12	Synthesis of V-doped In ₂ O ₃ Nanocrystals via Digestive-Ripening Process and Their Electrocatalytic Properties in CO ₂ Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 11890-11897.	4.0	44
13	Total Synthesis of Iheyamine A via the Cyanide-Catalyzed Imino-Stetter Reaction. Journal of Organic Chemistry, 2020, 85, 8149-8156.	1.7	15
14	Total Syntheses of <i>rac</i> ―and (+)â€Goniomitine. Advanced Synthesis and Catalysis, 2019, 361, 4888-4892.	2.1	13
15	Total Synthesis of Phenanthroquinolizidine Alkaloids Using a Building Block Strategy. Journal of Organic Chemistry, 2019, 84, 11902-11910.	1.7	10
16	Synthesis of benzo[<i>a</i>]carbazoles <i>via</i> cyanide-catalyzed imino-Stetter reaction/Friedel–Crafts reaction sequence. Organic Chemistry Frontiers, 2019, 6, 456-467.	2.3	12
17	Synthesis of 2â€Arylquinolines from 2â€lodoanilines and <i>β</i> àâ€Chloropropiophenones <i>via</i> Palladiumâ€Catalyzed Cascade Reaction. Asian Journal of Organic Chemistry, 2019, 8, 1631-1636.	1.3	5
18	Modular Syntheses of Phenanthroindolizidine Natural Products. Organic Letters, 2019, 21, 4201-4204.	2.4	16

#	Article	IF	CITATIONS
19	<i>tert</i> â€Butoxideâ€Mediated Synthesis of 3,4′â€Biquinolines from 2â€Aminochalcones. Advanced Synthe and Catalysis, 2019, 361, 2360-2364.	esis 2.1	1
20	Synthesis of 2-Substituted Quinolines from 2-Aminostyryl Ketones Using Iodide as a Catalyst. Journal of Organic Chemistry, 2018, 83, 5177-5186.	1.7	24
21	Enantioselective Synthesis of βâ€Aminotetralins via Chiral Phosphoric Acidâ€catalyzed Reductive Amination of βâ€īetralones. Advanced Synthesis and Catalysis, 2018, 360, 462-467.	2.1	16
22	Chemistry of Cyanide Adducts of Aldimines from Aniline Derivatives. Chemical Record, 2018, 18, 1474-1488.	2.9	15
23	On-Water Synthesis of 2-Substituted Quinolines from 2-Aminochalcones Using Benzylamine as the Nucleophilic Catalyst. Journal of Organic Chemistry, 2018, 83, 13036-13044.	1.7	29
24	Enantioselective Synthesis of Tetrahydroquinolines from 2-Aminochalcones via a Consecutive One-Pot Reaction Catalyzed by Chiral Phosphoric Acid. Journal of Organic Chemistry, 2018, 83, 12486-12495.	1.7	25
25	Total Syntheses of Arcyriaflavin A and Calothrixin B Using 2,2′-Bisindole-3-acetic Acid Derivative as a Common Intermediate. Organic Letters, 2017, 19, 2785-2788.	2.4	41
26	Concise catalytic asymmetric total syntheses of ancistrocladinium A and its atropdiastereomer. Organic Chemistry Frontiers, 2017, 4, 1341-1349.	2.3	5
27	Concise Total Syntheses of Paullone and Kenpaullone via Cyanide-Catalyzed Intramolecular Imino-Stetter Reaction. Synthesis, 2017, 49, 4247-4253.	1.2	15
28	Preparation of Building Blocks for Iterative Suzukiâ€Miyaura Reactions via Direct Bromination of Aryl Boronic Acids: Oneâ€Pot Total Syntheses of Dictyoterphenyls A and B. Advanced Synthesis and Catalysis, 2017, 359, 3831-3836.	2.1	7
29	A general strategy for the synthesis of indoloquinolizine alkaloids <i>via</i> a cyanide-catalyzed imino-Stetter reaction. Organic and Biomolecular Chemistry, 2017, 15, 10265-10275.	1.5	15
30	Diastereomeric Resolution of a Racemic Biarylboronic Acid and Its Application to Divergent Asymmetric Total Syntheses of Some Axially Chiral Natural Products. Advanced Synthesis and Catalysis, 2016, 358, 549-554.	2.1	8
31	Synthesis of 2â€Arylâ€Substituted Indoleâ€3â€acetic Acid Derivatives <i>via</i> Intramolecular Iminoâ€Stetter Reaction of Aldimines with Cyanide. Advanced Synthesis and Catalysis, 2016, 358, 1566-1570.	2.1	42
32	Development of Organic Transformations Based on Protodeboronation. ACS Symposium Series, 2016, , 483-523.	0.5	3
33	Effect of multi-armed triphenylamine-based hole transporting materials for high performance perovskite solar cells. Chemical Science, 2016, 7, 5517-5522.	3.7	78
34	Total Synthesis of Luotonin A and Rutaecarpine from an Aldimine via the Designed Cyclization. Organic Letters, 2016, 18, 5280-5283.	2.4	62
35	Concise Asymmetric Total Synthesis of <i>ent</i> â€Ancistrocladinium A. Advanced Synthesis and Catalysis, 2016, 358, 2883-2888.	2.1	12
36	Synthesis of 2-Vinylindole-3-Acetic Acid Derivatives via Cyanide-Catalyzed Imino-Stetter Reaction. Journal of Organic Chemistry, 2016, 81, 7917-7923.	1.7	29

3

#	Article	IF	CITATIONS
37	Synthesis of Optically Pure 3,3′-Disubstituted-1,1′-Bi-6-Methoxy-2-Phenol (BIPhOL) Derivatives via Diastereomeric Resolution. Journal of Organic Chemistry, 2016, 81, 8464-8469.	1.7	6
38	Remarkable Differences in Reactivity between Benzothiazoline and Hantzsch Ester as a Hydrogen Donor in Chiral Phosphoric Acid Catalyzed Asymmetric Reductive Amination of Ketones. Chemistry - an Asian Journal, 2016, 11, 274-279.	1.7	12
39	Synthesis of Benzimidazoleâ€Substituted Arylboronic Acids <i>via</i> Aerobic Oxidation of 1,2â€Arylenediamines and Formylâ€Substituted Aryl MIDA Boronates using Potassium Iodide as a Catalyst. Advanced Synthesis and Catalysis, 2015, 357, 2951-2956.	2.1	11
40	Metalâ€Free Aerobic Oxidative Esterification of Aldehydes in the Presence of Cyanide. Bulletin of the Korean Chemical Society, 2015, 36, 2055-2061.	1.0	5
41	Enantioselective Synthesis of \hat{l}^2 -Arylamines via Chiral Phosphoric Acid-Catalyzed Asymmetric Reductive Amination. Journal of Organic Chemistry, 2015, 80, 6367-6374.	1.7	35
42	A [2,2]paracyclophane triarylamine-based hole-transporting material for high performance perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24215-24220.	5.2	87
43	Formation of Amides from Imines via Cyanide-Mediated Metal-Free Aerobic Oxidation. Journal of Organic Chemistry, 2015, 80, 11993-11998.	1.7	34
44	Significant facilitation of metal-free aerobic oxidative cyclization of imines with water in synthesis of benzimidazoles. Tetrahedron, 2015, 71, 532-538.	1.0	67
45	Synthesis of quinazolinones from anthranilamides and aldehydes via metal-free aerobic oxidation in DMSO. Tetrahedron Letters, 2014, 55, 2340-2344.	0.7	135
46	General Methods for Synthesis of <i>N</i> à€Methyliminodiacetic Acid Boronates from Unstable <i>ortho</i> â€Phenolboronic Acids. Advanced Synthesis and Catalysis, 2014, 356, 1767-1772.	2.1	10
47	Synthesis of 2-Aminoquinoxalines via One-Pot Cyanide-Based Sequential Reaction under Aerobic Oxidation Conditions. Journal of Organic Chemistry, 2014, 79, 901-907.	1.7	27
48	Metal-Free Protodeboronation of Electron-Rich Arene Boronic Acids and Its Application to <i>ortho</i> -Functionalization of Electron-Rich Arenes Using a Boronic Acid as a Blocking Group. Journal of Organic Chemistry, 2014, 79, 7277-7285.	1.7	43
49	Beyond Benzoin Condensation: Trimerization of Aldehydes via Metal-Free Aerobic Oxidative Esterification of Aldehydes with Benzoin Products in the Presence of Cyanide. Organic Letters, 2014, 16, 2514-2517.	2.4	23
50	Protodeboronation of ortho- and para-Phenol Boronic Acids and Application to ortho and meta Functionalization of Phenols Using Boronic Acids as Blocking and Directing Groups. Journal of Organic Chemistry, 2013, 78, 12154-12160.	1.7	58
51	Cyanide as a powerful catalyst for facile synthesis of benzofused heteroaromatic compounds via aerobic oxidation. Tetrahedron, 2013, 69, 6565-6573.	1.0	57
52	Diastereomeric Resolution of <i>rac</i> -1,1 \hat{a} <2-Bi-2-naphthol Boronic Acid with a Chiral Boron Ligand and Its Application to Simultaneous Synthesis of (<i>R</i>)- and (<i>S</i>)-3,3 \hat{a} <2-Disubstituted 1,1 \hat{a} <2-Bi-2-naphthol Derivatives. Journal of Organic Chemistry, 2013, 78, 7086-7092.	1.7	15
53	Cyanide as a Powerful Catalyst for Facile Preparation of 2â€Substituted Benzoxazoles <i>via</i> Aerobic Oxidation. Advanced Synthesis and Catalysis, 2012, 354, 2992-2996.	2.1	78
54	Catalytic Asymmetric Claisen Rearrangement of Enolphosphonates: Construction of Vicinal Tertiary and Allâ€Carbon Quaternary Centers. Angewandte Chemie - International Edition, 2012, 51, 8264-8267.	7.2	66

#	Article	IF	CITATION
55	Chiral BrÃ,nsted Acid from a Cationic Gold(I) Complex: Catalytic Enantioselective Protonation of Silyl Enol Ethers of Ketones. Journal of the American Chemical Society, 2011, 133, 13248-13251.	6.6	115
56	Development of N,N-bis(perfluoroalkanesulfonyl)squaramides as new strong BrÃ,nsted acids and their application to organic reactions. Tetrahedron, 2010, 66, 4257-4264.	1.0	28
57	<i>N</i> -Triflylthiophosphoramide Catalyzed Enantioselective Mukaiyama Aldol Reaction of Aldehydes with Silyl Enol Ethers of Ketones. Organic Letters, 2010, 12, 2476-2479.	2.4	76
58	Synthesis of N,N-Bis(nonaflyl) Squaric Acid Diamide and its Application to Organic Reactions. Bulletin of the Korean Chemical Society, 2010, 31, 539-540.	1.0	7
59	A new BrÃ,nsted acid derived from squaric acid and its application to Mukaiyama aldol and Michael reactions. Tetrahedron Letters, 2009, 50, 3555-3558.	0.7	24
60	A BrÃ, nsted Acid Catalyst for the Enantioselective Protonation Reaction. Journal of the American Chemical Society, 2008, 130, 9246-9247.	6.6	244