
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5620284/publications.pdf Version: 2024-02-01

RULCLOPES

#	Article	IF	CITATIONS
1	Up-cycling tomato pomace by thermochemical liquefaction – A response surface methodology assessment. Biomass and Bioenergy, 2022, 156, 106324.	2.9	7
2	Acid-Catalyzed Liquefaction of Biomasses from Poplar Clones for Short Rotation Coppice Cultivations. Molecules, 2022, 27, 304.	1.7	6
3	Bio-Oil: The Next-Generation Source of Chemicals. Reactions, 2022, 3, 118-137.	0.9	16
4	Edible films to improve quality and shelf life of fresh tortillas. International Journal of Gastronomy and Food Science, 2022, 27, 100480.	1.3	5
5	Biobased Polyurethane Coatings for Corrosion Protection of Carbon Steel. , 2022, 8, .		0
6	Development and In Vitro Validation of Antibacterial Paints Containing Chloroxylenol and Terpineol. Toxics, 2022, 10, 343.	1.6	3
7	Clycerol: The liquid support for nanocatalysts. , 2021, , 585-612.		0
8	The importance of green chemistry metrics. , 2021, , 37-62.		2
9	Boosting the Higher Heating Value of Eucalyptus globulus via Thermochemical Liquefaction. Sustainability, 2021, 13, 3717.	1.6	11
10	Injectable hydrogels with two different rates of drug release based on pluronic/water system filled with poly(Îμ-caprolactone) microcapsules. Journal of Materials Science, 2021, 56, 13416-13428.	1.7	9
11	Simplified multiple linear regression models for the estimation of heating values of refuse derived fuels. Fuel, 2021, 294, 120541.	3.4	5
12	Thermochemical liquefaction of pinewood shaves – Evaluating the performance of cleaner and sustainable alternative solvents. Journal of Cleaner Production, 2021, 304, 127088.	4.6	10
13	The Role of Ionic Liquids on Biomass Liquefaction—A Short Review of the Recent Advances. Processes, 2021, 9, 1214.	1.3	7
14	Auto-Disinfectant Acrylic Paints Functionalised with Triclosan and Isoborneol—Antibacterial Assessment. Polymers, 2021, 13, 2197.	2.0	6
15	Estimation of higher heating value (HHV) of bio-oils from thermochemical liquefaction by linear correlation. Fuel, 2021, 302, 121149.	3.4	16
16	Self-Disinfecting Paints with the Natural Antimicrobial Substances: Colophony and Curcumin. Antibiotics, 2021, 10, 1351.	1.5	6
17	Thermochemical Liquefaction as a Cleaner and Efficient Route for Valuing Pinewood Residues from Forest Fires. Molecules, 2021, 26, 7156.	1.7	9
18	Non-Formaldehyde, Bio-Based Adhesives for Use in Wood-Based Panel Manufacturing Industry—A Review. Polymers, 2021, 13, 4086.	2.0	26

#	Article	lF	CITATIONS
19	The role played by different active hydrogen sources in the microencapsulation of a commercial oligomeric diisocyanate. Journal of Materials Science, 2020, 55, 4607-4623.	1.7	13
20	Hybrid shell microcapsules containing isophorone diisocyanate with high thermal and chemical stability for autonomous selfâ€healing of epoxy coatings. Journal of Applied Polymer Science, 2020, 137, 48751.	1.3	16
21	Microencapsulation of Isocyanate in Biodegradable Poly(ε-caprolactone) Capsules and Application in Monocomponent Green Adhesives. ACS Applied Polymer Materials, 2020, 2, 4425-4438.	2.0	14
22	Glycerol Role in Nano Oxides Synthesis and Catalysis. Catalysts, 2020, 10, 1406.	1.6	9
23	Liquefaction of almond husk for assessment as feedstock to obtain valuable bio-oils. Pure and Applied Chemistry, 2019, 91, 1177-1190.	0.9	4
24	Converting a residue from an edible source (Ceratonia siliqua L.) into a bio-oil. Journal of Environmental Chemical Engineering, 2019, 7, 103004.	3.3	14
25	Replacement of petroleum-derived diols by sustainable biopolyols in one component polyurethane foams. Journal of Cleaner Production, 2019, 212, 1036-1043.	4.6	33
26	Modelling of pine wood sawdust thermochemical liquefaction. Biomass and Bioenergy, 2019, 120, 200-210.	2.9	25
27	GC-MS Analysis and Characterization of Bio-Oil from Sweet Potato Peel – A Putative Bio-Fuel. Journal of Material Science and Technology Research, 2019, 6, 110-119.	0.2	1
28	Estimation of HHV of lignocellulosic biomass towards hierarchical cluster analysis by Euclidean's distance method. Fuel, 2018, 221, 72-77.	3.4	32
29	Hybrid custom-tailored sol-gel derived microscaffold for biocides immobilization. Microporous and Mesoporous Materials, 2018, 261, 252-258.	2.2	15
30	One-Component Spray Polyurethane Foam from Liquefied Pinewood Polyols: Pursuing Eco-Friendly Materials. Journal of Polymers and the Environment, 2018, 26, 91-100.	2.4	13
31	Design of simplified models for the estimation of higher heating value of refused derived fuels. Fuel, 2018, 212, 431-436.	3.4	20
32	Synthesis and Characterization of Isosorbide-Based Polyurethanes Exhibiting Low Cytotoxicity Towards HaCaT Human Skin Cells. Polymers, 2018, 10, 1170.	2.0	13
33	Quantification by LC-MS/MS of individual sugars in fruit juice consumed in Portugal. Journal of Physics: Conference Series, 2018, 1065, 232004.	0.3	3
34	Polyurethanes as New Excipients in Nail Therapeutics. Pharmaceutics, 2018, 10, 276.	2.0	6
35	Isophorone Diisocyanate (IPDI) Microencapsulation for Mono-Component Adhesives: Effect of the Active H and NCO Sources. Polymers, 2018, 10, 825.	2.0	22
36	Determination of Acrylamide in Portuguese Bread by UPLC-MS/MS: Metrological and Chemometric tools. Acta IMEKO (2012), 2018, 7, 96.	0.4	7

#	Article	IF	CITATIONS
37	Polyurethane one-component foam formulation optimization for low free isocianate monomer content. Journal of Cellular Plastics, 2017, 53, 167-179.	1.2	4
38	Organically-modified silica based microspheres for self-curing polyurethane one component foams. Microporous and Mesoporous Materials, 2017, 244, 244-250.	2.2	10
39	Amino-silica microcapsules as effective curing agents for polyurethane foams. Journal of Materials Science, 2017, 52, 5380-5389.	1.7	9
40	New Polyurethane Nail Lacquers for the Delivery of Terbinafine: Formulation and Antifungal Activity Evaluation. Journal of Pharmaceutical Sciences, 2017, 106, 1570-1577.	1.6	28
41	Is biomass liquefaction an option for the viability of poplar short rotation coppices? A preliminary experimental approach. Energy, 2017, 124, 40-45.	4.5	24
42	Heuristic analysis of Eucalyptus globulus bark depolymerization via acid-liquefaction. Cellulose, 2017, 24, 659-668.	2.4	16
43	Direct and efficient liquefaction of potato peel into bio-oil. Environmental Chemistry Letters, 2017, 15, 453-458.	8.3	12
44	Ultimate use of Cork – Unorthodox and innovative applications. Ciência & Tecnologia Dos Materiais, 2017, 29, 65-72.	0.5	9
45	Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways. Energies, 2017, 10, 1817.	1.6	110
46	Upcycling potato peel waste – Data of the pre-screening of the acid-catalyzed liquefaction. Data in Brief, 2016, 7, 1455-1457.	0.5	3
47	Potential biofuels from liquefied industrial wastes – Preliminary evaluation of heats of combustion and van Krevelen correlations. Journal of Cleaner Production, 2016, 137, 195-199.	4.6	26
48	1H-NMR dataset for hydroxycoumarins –Aesculetin, 4-Methylumbelliferone, and umbelliferone. Data in Brief, 2016, 8, 308-311.	0.5	2
49	Valorizing potato peel waste: an overview of the latest publications. Reviews in Environmental Science and Biotechnology, 2016, 15, 585-592.	3.9	27
50	Potential biofuel from liquefied cork – Higher heating value comparison. Fuel, 2016, 174, 114-117.	3.4	34
51	Natural polymeric water-based adhesive from cork liquefaction. Industrial Crops and Products, 2016, 84, 314-319.	2.5	30
52	Acid Liquefaction of Potato (Solanum tuberosum) and Sweet Potato (Ipomoea batatas) Cultivars Peels – Pre-Screening of Antioxidant Activity/Total Phenolic and Sugar Contents. BioResources, 2016, 12, .	0.5	12
53	Biomass acid-catalyzed liquefaction – Catalysts performance and polyhydric alcohol influence. Data in Brief, 2015, 5, 736-738.	0.5	13
54	Microwave-assisted Liquefaction of Cork - From an Industrial Waste to Sustainable Chemicals. Industrial Engineering & Management, 2015, 04, .	0.1	4

#	Article	IF	CITATIONS
55	Sonication as a foremost tool to improve cork liquefaction. Industrial Crops and Products, 2015, 74, 9-13.	2.5	35
56	Efficient and First Regio―and Stereoselective Direct <i>C</i> â€Clycosylation of a Flavanone Catalysed by Pr(OTf) ₃ Under Conventional Heating or Ultrasound Irradiation. European Journal of Organic Chemistry, 2013, 2013, 1441-1447.	1.2	20
57	Fries-type Reactions for the C-Glycosylation of Phenols. Current Organic Chemistry, 2011, 15, 128-148.	0.9	33
58	Phenolic composition and antioxidant activity of Rocha pear and other pear cultivars – A comparative study. Journal of Functional Foods, 2010, 2, 153-157.	1.6	97
59	Bioactivity studies and chemical profile of the antidiabetic plant Genista tenera. Journal of Ethnopharmacology, 2009, 122, 384-393.	2.0	51
60	<i>C</i> -Glycosylflavonoids: Identification, Bioactivity and Synthesis. Natural Product Communications, 2007, 2, 1934578X0700201.	0.2	11
61	A new lupene triterpenetriol and anticholinesterase activity of Salvia sclareoides. Fìtoterapìâ, 2007, 78, 474-481.	1.1	47