Christina I Schroeder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5620086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural and functional insights into the inhibition of human voltage-gated sodium channels by μ-conotoxin KIIIA disulfide isomers. Journal of Biological Chemistry, 2022, 298, 101728.	1.6	9
2	Antimicrobial Peptide Mimics for Clinical Use: Does Size Matter?. Frontiers in Immunology, 2022, 13, .	2.2	14
3	Small cyclic sodium channel inhibitors. Biochemical Pharmacology, 2021, 183, 114291.	2.0	14
4	Bimodal Imaging of Mouse Peripheral Nerves with Chlorin Tracers. Molecular Pharmaceutics, 2021, 18, 940-951.	2.3	3
5	Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, <i>Doratifera vulnerans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
6	Chemical Synthesis of TFF3 Reveals Novel Mechanistic Insights and a Gut-Stable Metabolite. Journal of Medicinal Chemistry, 2021, 64, 9484-9495.	2.9	8
7	Pharmacological Inhibition of the Voltage-Gated Sodium Channel NaV1.7 Alleviates Chronic Visceral Pain in a Rodent Model of Irritable Bowel Syndrome. ACS Pharmacology and Translational Science, 2021, 4, 1362-1378.	2.5	10
8	Cyclic Peptides as T-Type Calcium Channel Blockers: Characterization and Molecular Mapping of the Binding Site. ACS Pharmacology and Translational Science, 2021, 4, 1379-1389.	2.5	3
9	Melanocortin 1 Receptor Agonists Based on a Bivalent, Bicyclic Peptide Framework. Journal of Medicinal Chemistry, 2021, 64, 9906-9915.	2.9	6
10	Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells. Biotechnology Advances, 2021, 50, 107769.	6.0	13
11	Multipurpose peptides: The venoms of Amazonian stinging ants contain anthelmintic ponericins with diverse predatory and defensive activities. Biochemical Pharmacology, 2021, 192, 114693.	2.0	10
12	Enzymatic Ligation of Disulfide-Rich Animal Venom Peptides: Using Sortase A to Form Double-Knotted Peptides. Methods in Molecular Biology, 2021, 2355, 83-92.	0.4	0
13	Evaluation of Efficient Non-reducing Enzymatic and Chemical Ligation Strategies for Complex Disulfide-Rich Peptides. Bioconjugate Chemistry, 2021, 32, 2407-2419.	1.8	4
14	Weaponisation â€~on the fly': Convergent recruitment of knottin and defensin peptide scaffolds into the venom of predatory assassin flies. Insect Biochemistry and Molecular Biology, 2020, 118, 103310.	1.2	10
15	Enzymatic Ligation of a Pore Blocker Toxin and a Gating Modifier Toxin: Creating Double-Knotted Peptides with Improved Sodium Channel NaV1.7 Inhibition. Bioconjugate Chemistry, 2020, 31, 64-73.	1.8	23
16	Discovery, Pharmacological Characterisation and NMR Structure of the Novel µ-Conotoxin SxIIIC, a Potent and Irreversible NaV Channel Inhibitor. Biomedicines, 2020, 8, 391.	1.4	12
17	Recifin A, Initial Example of the Tyr-Lock Peptide Structural Family, Is a Selective Allosteric Inhibitor of Tyrosyl-DNA Phosphodiesterase I. Journal of the American Chemical Society, 2020, 142, 21178-21188.	6.6	7
18	Structure, Function, and Therapeutic Potential of the Trefoil Factor Family in the Gastrointestinal Tract. ACS Pharmacology and Translational Science, 2020, 3, 583-597.	2.5	17

#	Article	IF	CITATIONS
19	Manipulation of a spider peptide toxin alters its affinity for lipid bilayers and potency and selectivity for voltage-gated sodium channel subtype 1.7. Journal of Biological Chemistry, 2020, 295, 5067-5080.	1.6	13
20	Pharmacological activity and NMR solution structure of the leech peptide HSTX-I. Biochemical Pharmacology, 2020, 181, 114082.	2.0	2
21	Discovery and characterisation of novel peptides from Amazonian stinging ant venoms with antiparasitic activity. Toxicon, 2020, 177, S60.	0.8	1
22	Mapping the Molecular Surface of the Analgesic NaV1.7-Selective Peptide Pn3a Reveals Residues Essential for Membrane and Channel Interactions. ACS Pharmacology and Translational Science, 2020, 3, 535-546.	2.5	16
23	Early development of Monoplex pilearis and Monoplex parthenopeus (Gastropoda: Cymatiidae): biology and morphology. Organisms Diversity and Evolution, 2020, 20, 51-62.	0.7	2
24	Chemical synthesis of human trefoil factor 1 (TFF1) and its homodimer provides novel insights into their mechanisms of action. Chemical Communications, 2020, 56, 6420-6423.	2.2	8
25	Three-Dimensional Structure Determination of Peptides Using Solution Nuclear Magnetic Resonance Spectroscopy. Methods in Molecular Biology, 2020, 2068, 129-162.	0.4	14
26	Fluorescence Imaging of Peripheral Nerves by a Na _v 1.7-Targeted Inhibitor Cystine Knot Peptide. Bioconjugate Chemistry, 2019, 30, 2879-2888.	1.8	20
27	Cyclizing Disulfide-Rich Peptides Using Sortase A. Methods in Molecular Biology, 2019, 2012, 29-41.	0.4	5
28	Antiallodynic effects of the selective NaV1.7 inhibitor Pn3a in a mouse model of acute postsurgical pain: evidence for analgesic synergy with opioids and baclofen. Pain, 2019, 160, 1766-1780.	2.0	35
29	Peptide-Membrane Interactions Affect the Inhibitory Potency and Selectivity of Spider Toxins ProTx-II and GpTx-1. ACS Chemical Biology, 2019, 14, 118-130.	1.6	15
30	Where cone snails and spiders meet: design of small cyclic sodium hannel inhibitors. FASEB Journal, 2019, 33, 3693-3703.	0.2	23
31	Calcium-Mediated Allostery of the EGF Fold. ACS Chemical Biology, 2018, 13, 1659-1667.	1.6	10
32	Gating modifier toxins isolated from spider venom: Modulation of voltage-gated sodium channels and the role of lipid membranes. Journal of Biological Chemistry, 2018, 293, 9041-9052.	1.6	35
33	Development of Novel Melanocortin Receptor Agonists Based on the Cyclic Peptide Framework of Sunflower Trypsin Inhibitor-1. Journal of Medicinal Chemistry, 2018, 61, 3674-3684.	2.9	29
34	Targeted Delivery of Cyclotides <i>via</i> Conjugation to a Nanobody. ACS Chemical Biology, 2018, 13, 2973-2980.	1.6	13
35	Efficient Enzymatic Ligation of Inhibitor Cystine Knot Spider Venom Peptides: Using Sortase A To Form Double-Knottins That Probe Voltage-Gated Sodium Channel Na _V 1.7. Bioconjugate Chemistry, 2018, 29, 3309-3319.	1.8	19
36	Engineering potent mesotrypsin inhibitors based on the plant-derived cyclic peptide, sunflower trypsin inhibitor-1. European Journal of Medicinal Chemistry, 2018, 155, 695-704.	2.6	20

#	Article	IF	CITATIONS
37	Bioactive Compounds Isolated from Neglected Predatory Marine Gastropods. Marine Drugs, 2018, 16, 118.	2.2	17
38	Understanding how toxins interact with lipid membranes and ion channels, NHMRC. Impact, 2018, 2018, 71-73.	0.0	0
39	Spider peptide toxin HwTx-IV engineered to bind to lipid membranes has an increased inhibitory potency at human voltage-gated sodium channel hNa V 1.7. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 835-844.	1.4	40
40	Gating modifier toxin interactions with ion channels and lipid bilayers: Is the trimolecular complex real?. Neuropharmacology, 2017, 127, 32-45.	2.0	17
41	The Importance of Peptide-Membrane Interactions in Toxin Inhibitions of Sodium Channels. Biophysical Journal, 2017, 112, 226a.	0.2	Ο
42	Modelling the interactions between animal venom peptides and membrane proteins. Neuropharmacology, 2017, 127, 20-31.	2.0	14
43	Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies. Biopolymers, 2017, 108, e22927.	1.2	11
44	Lengths of the C-Terminus and Interconnecting Loops Impact Stability of Spider-Derived Gating Modifier Toxins. Toxins, 2017, 9, 248.	1.5	21
45	Membrane-binding properties of gating modifier and pore-blocking toxins: Membrane interaction is not a prerequisite for modification of channel gating. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 872-882.	1.4	22
46	Rational Design and Synthesis of a Novel Membrane Binding NaV1.8 Selective Inhibitor with in vivo Activity in Pain Models. Biophysical Journal, 2016, 110, 33a.	0.2	0
47	Truncated Glucagon-like Peptide-1 and Exendin-4 α-Conotoxin pl14a Peptide Chimeras Maintain Potency and α-Helicity and Reveal Interactions Vital for cAMP Signaling in Vitro. Journal of Biological Chemistry, 2016, 291, 15778-15787.	1.6	10
48	Approaches to the stabilization of bioactive epitopes by grafting and peptide cyclization. Biopolymers, 2016, 106, 89-100.	1.2	56
49	Substrate-Guided Design of Selective FXIIa Inhibitors Based on the Plant-Derived <i>Momordica cochinchinensis</i> Trypsin Inhibitor-II (MCoTI-II) Scaffold. Journal of Medicinal Chemistry, 2016, 59, 7287-7292.	2.9	34
50	Efficient enzymatic cyclization of an inhibitory cystine knotâ€containing peptide. Biotechnology and Bioengineering, 2016, 113, 2202-2212.	1.7	22
51	Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7. Journal of Biological Chemistry, 2016, 291, 17049-17065.	1.6	62
52	Development of a μO-Conotoxin Analogue with Improved Lipid Membrane Interactions and Potency for the Analgesic Sodium Channel NaV1.8. Journal of Biological Chemistry, 2016, 291, 11829-11842.	1.6	37
53	Cyclic alpha-conotoxin peptidomimetic chimeras as potent GLP-1R agonists. European Journal of Medicinal Chemistry, 2015, 103, 175-184.	2.6	20
54	Highâ€Throughput Synthesis of Peptide αâ€Thioesters: A Safety Catch Linker Approach Enabling Parallel Hydrogen Fluoride Cleavage. ChemMedChem, 2014, 9, 1038-1046.	1.6	6

CHRISTINA I SCHROEDER

#	Article	IF	CITATIONS
55	Rational design and synthesis of an orally bioavailable peptide guided by NMR amide temperature coefficients. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17504-17509.	3.3	130
56	Design and Synthesis of Truncated EGF-A Peptides that Restore LDL-R Recycling in the Presence of PCSK9 InÂVitro. Chemistry and Biology, 2014, 21, 284-294.	6.2	63
57	Fmoc-Based Synthesis of Disulfide-Rich Cyclic Peptides. Journal of Organic Chemistry, 2014, 79, 5538-5544.	1.7	110
58	Chemical Synthesis, 3D Structure, and ASIC Binding Site of the Toxin Mambalginâ€⊋. Angewandte Chemie - International Edition, 2014, 53, 1017-1020.	7.2	66
59	Cyclic Penta- and Hexaleucine Peptides without <i>N</i> -Methylation Are Orally Absorbed. ACS Medicinal Chemistry Letters, 2014, 5, 1148-1151.	1.3	55
60	Semienzymatic Cyclization of Disulfide-rich Peptides Using Sortase A. Journal of Biological Chemistry, 2014, 289, 6627-6638.	1.6	83
61	Disulfide-rich macrocyclic peptides as templates in drug design. European Journal of Medicinal Chemistry, 2014, 77, 248-257.	2.6	117
62	A novel α4/7 onotoxin LvIA from Conus lividus that selectively blocks α3β2 vs. α6/α3β2β3 nicotinic acetylcholine receptors. FASEB Journal, 2014, 28, 1842-1853.	0.2	64
63	Peptides from Mamba Venom as Pain Killers. Angewandte Chemie - International Edition, 2013, 52, 3071-3073.	7.2	9
64	Spinal actions of ωâ€conotoxins, <scp>CVID</scp> , <scp>MVIIA</scp> and related peptides in a rat neuropathic pain model. British Journal of Pharmacology, 2013, 170, 245-254.	2.7	25
65	Recent Progress Towards Pharmaceutical Applications of Disulfide-Rich Cyclic Peptides. Current Protein and Peptide Science, 2013, 14, 532-552.	0.7	25
66	Therapeutic potential of conopeptides. Future Medicinal Chemistry, 2012, 4, 1243-1255.	1.1	40
67	Effects of Lys2 to Ala2 substitutions on the structure and potency of ï‰â€€onotoxins MVIIA and CVID. Biopolymers, 2012, 98, 345-356.	1.2	7
68	N―and câ€terminal extensions of μâ€conotoxins increase potency and selectivity for neuronal sodium channels. Biopolymers, 2012, 98, 161-165.	1.2	12
69	Lateral self-association of VWF involves the Cys2431-Cys2453 disulfide/dithiol in the C2 domain. Blood, 2011, 118, 5312-5318.	0.6	47
70	Palmitoyl:protein thioesterase (PPT1) inhibitors can act as pharmacological chaperones in infantile Batten disease. Biochemical and Biophysical Research Communications, 2010, 395, 66-69.	1.0	37
71	χ-Conopeptide Pharmacophore Development: Toward a Novel Class of Norepinephrine Transporter Inhibitor (Xen2174) for Pain. Journal of Medicinal Chemistry, 2009, 52, 6991-7002.	2.9	70
72	Neuronally Selective μ-Conotoxins from Conus striatus Utilize an α-Helical Motif to Target Mammalian Sodium Channels. Journal of Biological Chemistry, 2008, 283, 21621-21628.	1.6	43

CHRISTINA I SCHROEDER

#	Article	IF	CITATIONS
73	Isolation and Structure-Activity of Î1⁄4-Conotoxin TIIIA, A Potent Inhibitor of Tetrodotoxin-Sensitive Voltage-Gated Sodium Channels. Molecular Pharmacology, 2007, 71, 676-685.	1.0	63
74	AChBP-targeted α-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. EMBO Journal, 2007, 26, 3858-3867.	3.5	159
75	?-Conotoxin CVIB differentially inhibits native and recombinant N- and P/Q-type calcium channels. European Journal of Neuroscience, 2007, 25, 435-444.	1.2	27
76	ï‰-Conotoxins GVIA, MVIIA and CVID: SAR and Clinical Potential. Marine Drugs, 2006, 4, 193-214.	2.2	27
77	N-type Calcium Channel Blockers: Novel Therapeutics for the Treatment of Pain. Medicinal Chemistry, 2006, 2, 535-543.	0.7	58
78	Synthesis and biological evaluation of anthranilamide-based non-peptide mimetics of ω-conotoxin GVIA. Tetrahedron, 2006, 62, 7284-7292.	1.0	28
79	Peptides – From Discovery to Therapeutics. International Journal of Peptide Research and Therapeutics, 2006, 12, 195-195.	0.9	Ο
80	Identification of a Novel Class of Nicotinic Receptor Antagonists. Journal of Biological Chemistry, 2006, 281, 24745-24755.	1.6	70
81	Block of Voltage-Gated Calcium Channels by Peptide Toxins. , 2005, , 294-308.		2
82	The α2δ Auxiliary Subunit Reduces Affinity of ω-Conotoxins for Recombinant N-type (Cav2.2) Calcium Channels. Journal of Biological Chemistry, 2004, 279, 34705-34714.	1.6	74
83	Development of small molecules that mimic the binding of ï‰-conotoxins at the N-type voltage-gated calcium channel. Molecular Diversity, 2004, 8, 127-134.	2.1	34
84	Synthesis and biological evaluation of nonpeptide mimetics of ω-conotoxin GVIA. Bioorganic and Medicinal Chemistry, 2004, 12, 4025-4037.	1.4	61
85	Ϊ‰-Conotoxin CVID Inhibits a Pharmacologically Distinct Voltage-sensitive Calcium Channel Associated with Transmitter Release from Preganglionic Nerve Terminals. Journal of Biological Chemistry, 2003, 278, 4057-4062.	1.6	85
86	Inhibition of the Norepinephrine Transporter by the Venom Peptide χ-MrIA. Journal of Biological Chemistry, 2003, 278, 40317-40323.	1.6	60
87	Structure-activity relationships of ?-conotoxins at N-type voltage-sensitive calcium channels. , 2000, 13, 55-70.		95
88	Role of third intracellular loop of galanin receptor type 1 in signal transduction. Neuropeptides, 2000, 34, 25-31.	0.9	10