
MarÃ-a E Sarmiento

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5620065/publications.pdf Version: 2024-02-01

MADÃA E SADMIENTO

#	Article	IF	CITATIONS
1	Bacterial Outer Membrane Vesicles and Vaccine Applications. Frontiers in Immunology, 2014, 5, 121.	4.8	212
2	Induction of a protective response with an IgA monoclonal antibody against Mycobacterium tuberculosis 16kDa protein in a model of progressive pulmonary infection. International Journal of Medical Microbiology, 2009, 299, 447-452.	3.6	68
3	Passive administration of purified secretory IgA from human colostrum induces protection against Mycobacterium tuberculosis in a murine model of progressive pulmonary infection. BMC Immunology, 2013, 14, S3.	2.2	51
4	Dry-reagent gold nanoparticle-based lateral flow biosensor for the simultaneous detection of Vibrio cholerae serogroups O1 and O139. Journal of Microbiological Methods, 2011, 86, 277-282.	1.6	46
5	Pulmonary non-tuberculous mycobacterial infections: current state and future management. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 799-826.	2.9	41
6	Study of KIR genes in tuberculosis patients. Tissue Antigens, 2006, 68, 386-389.	1.0	38
7	COVID-19 Lethality in Sub-Saharan Africa and Helminth Immune Modulation. Frontiers in Immunology, 2020, 11, 574910.	4.8	37
8	Specific cellular and humoral immune response in Balbc mice immunised with an expression genomic library of Trypanosoma cruzi. Vaccine, 1998, 16, 608-612.	3.8	32
9	Prophylactic effect of administration of human gamma globulins in a mouse model of tuberculosis. Tuberculosis, 2009, 89, 218-220.	1.9	32
10	Proteoliposomes from Mycobacterium smegmatis induce immune cross-reactivity against Mycobacterium tuberculosis antigens in mice. Vaccine, 2011, 29, 6236-6241.	3.8	28
11	Role of Interferons in the Development of Diagnostics, Vaccines, and Therapy for Tuberculosis. Journal of Immunology Research, 2017, 2017, 1-10.	2.2	28
12	The effect of the administration of human gamma globulins in a model of BCG infection in mice. Tuberculosis, 2006, 86, 268-272.	1.9	26
13	Biodistribution of liposome-entrapped human gamma-globulin. Biopharmaceutics and Drug Disposition, 2006, 27, 275-283.	1.9	17
14	Cellular and humoral immunogenicity of recombinant Mycobacterium smegmatis expressing Ag85B epitopes in mice. International Journal of Mycobacteriology, 2016, 5, 7-13.	0.6	17
15	DNA markers for tuberculosis diagnosis. Tuberculosis, 2018, 113, 139-152.	1.9	17
16	Evaluation of the humoral immune response and cross reactivity against Mycobacterium tuberculosis of mice immunized with liposomes containing glycolipids of Mycobacterium smegmatis. BMC Immunology, 2013, 14, S13.	2.2	16
17	Immunogenicity of recombinant Mycobacterium bovis bacille Calmette–Guèrin clones expressing T and B cell epitopes of Mycobacterium tuberculosis antigens. BMC Immunology, 2013, 14, S5.	2.2	15
18	A conjugate vaccine composed of a heat shock protein 60 T-cell epitope peptide (p458) and Neisseria meningitidis type B capsular polysaccharide. Vaccine, 2006, 24, 6555-6563.	3.8	14

MarÃa E Sarmiento

#	Article	IF	CITATIONS
19	Tuberculosis vaccine candidates based on mycobacterial cell envelope components. Tuberculosis, 2019, 115, 26-41.	1.9	14
20	The importance of animal models in tuberculosis vaccine development. The Malaysian Journal of Medical Sciences, 2011, 18, 5-12.	0.5	13
21	Immunogenicity and cross-reactivity against Mycobacterium tuberculosis of proteoliposomes derived from Mycobacterium bovis BCG. BMC Immunology, 2013, 14, S7.	2.2	12
22	Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections. Applied Biochemistry and Biotechnology, 2018, 184, 852-868.	2.9	12
23	Evaluation of specific humoral immune response and cross reactivity against Mycobacterium tuberculosis antigens induced in mice immunized with liposomes composed of total lipids extracted from Mycobacterium smegmatis. BMC Immunology, 2013, 14, S11.	2.2	11
24	Comparative transcriptome profiling of horseshoe crab Tachypleus gigas hemocytes in response to lipopolysaccharides. Fish and Shellfish Immunology, 2021, 117, 148-156.	3.6	10
25	Sequence comparison of six human microRNAs genes between tuberculosis patients and healthy individuals. International Journal of Mycobacteriology, 2015, 4, 341-346.	0.6	9
26	Comparative study of IgA V <scp>_H</scp> 3 gene usage in healthy <scp>TST</scp> ^{â^'} and <scp>TST</scp> ⁺ population exposed to tuberculosis: deep sequencing analysis. Immunology, 2015, 144, 302-311.	4.4	9
27	Mycobacterium smegmatis proteoliposome induce protection in a murine progressive pulmonary tuberculosis model. Tuberculosis, 2016, 101, 44-48.	1.9	9
28	Vaccines for TB: Lessons from the Past Translating into Future Potentials. Journal of Immunology Research, 2015, 2015, 1-9.	2.2	8
29	Protective capacity of proteoliposomes fromMycobacterium bovisBCG in a mouse model of tuberculosis. Human Vaccines and Immunotherapeutics, 2015, 11, 657-661.	3.3	8
30	TCR-like domain antibody against Mycobacterium tuberculosis (Mtb) heat shock protein antigen presented by HLA-A*11 and HLA-A*24. International Journal of Biological Macromolecules, 2020, 155, 305-314.	7.5	8
31	Antibody mediated immunity - a missed opportunity in the fight against tuberculosis?. The Malaysian Journal of Medical Sciences, 2010, 17, 66-7.	0.5	7
32	Recent Advances in Tuberculosis Vaccine Development. Current Respiratory Medicine Reviews, 2005, 1, 109-116.	0.2	6
33	Antibodies in the protection against mycobacterial infections: what have we learned?. Procedia in Vaccinology, 2010, 2, 172-177.	0.4	6
34	Immunoinformatics study on highly expressed Mycobacterium tuberculosis genes during infection. Tuberculosis, 2014, 94, 475-481.	1.9	6
35	Parasitic infections in Malaysian aborigines with pulmonary tuberculosis: a comparative cross-sectional study. Parasitology Research, 2019, 118, 2635-2642.	1.6	6
36	Engineered Mycobacterium tuberculosis antigen assembly into core-shell nanobeads for diagnosis of tuberculosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102374.	3.3	6

MarÃa E Sarmiento

#	Article	IF	CITATIONS
37	Immunization of mice with a Mycobacterium tuberculosis genomic expression library results in lower bacterial load in lungs after challenge with BCG. Tuberculosis, 2006, 86, 247-254.	1.9	5
38	Phage display of functional $\hat{l}\pm\hat{l}^2$ single-chain T-cell receptor molecules specific for CD1b:Ac2SGL complexes from Mycobacterium tuberculosis-infected cells. BMC Immunology, 2013, 14, S2.	2.2	4
39	In silico identification of common epitopes from pathogenic mycobacteria. BMC Immunology, 2013, 14, S6.	2.2	4
40	Selection of phage-displayed human antibody fragments specific for CD1b presenting the Mycobacterium tuberculosis glycolipid Ac2SGL. International Journal of Mycobacteriology, 2016, 5, 120-127.	0.6	4
41	Herpes virus OsHV-1 and the protistPerkinsus marinusmodify the expression of the Down syndrome cell adhesion molecule gene in gill and mantle ofCrassostreaspp Aquaculture Research, 2018, 49, 3638-3646.	1.8	4
42	Specific and cross-reactive immune response against Mycobacterium tuberculosis antigens in mice immunized with proteoliposomes from Mycobacterium bovis BCG. Asian Pacific Journal of Tropical Biomedicine, 2017, 7, 188-192.	1.2	3
43	A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors. Frontiers in Immunology, 2020, 11, 566710.	4.8	2
44	Immune Response to Streptomyces lividans in Mice: A Potential Vaccine Vehicle Against TB. The Open Vaccine Journal, 2009, 2, 85-91.	0.6	2
45	In Silico identification of M. TB proteins with diagnostic potential. BMC Immunology, 2013, 14, S9.	2.2	1
46	Interactions of domain antibody (dAbκ11) with Mycobacterium tuberculosis Ac2SGL in complex with CD1b. Tuberculosis, 2019, 114, 9-16.	1.9	1
47	Immunomodulatory Effects of Recombinant Mycobacterium smegmatis Expressing Antigen-85B Epitopes in Infected J774A.1 Murine Macrophages. Pathogens, 2020, 9, 1000.	2.8	1
48	Does our Mycobacteriome Influence COVID-19 Morbidity and Lethality?. Frontiers in Microbiology, 2021, 12, 589165.	3.5	1
49	Mitochondrial DNA sequence of the horseshoe crab Tachypleus gigas. Mitochondrial DNA Part B: Resources, 2021, 6, 1710-1714.	0.4	1
50	Microbial biodiversity in the throats of pulmonary tuberculosis patients and tuberculin skin test (TST) positive and negative healthy individuals in Malaysia. Tuberculosis, 2020, 124, 101965.	1.9	0
51	Identification of a Mycobacterium tuberculosis-specific gene marker for diagnosis of tuberculosis using semi-nested melt-MAMA qPCR (lprM-MAMA). Tuberculosis, 2020, 125, 102003.	1.9	0
52	Liposomes derived from Mycobacterium smegmatis promote immune activation of mice bone marrow-derived dendritic cells. International Journal of Mycobacteriology, 2020, 9, 261.	0.6	0