Lars GrÃ, ntved

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5619220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circulating TREM2 as a noninvasive diagnostic biomarker for NASH in patients with elevated liver stiffness. Hepatology, 2023, 77, 558-572.	3.6	17
2	Off-target lipid metabolism disruption by the mouse constitutive androstane receptor ligand TCPOBOP in humanized mice. Biochemical Pharmacology, 2022, 197, 114905.	2.0	7
3	Blockade of beta-adrenergic receptors reduces cancer growth and enhances the response to anti-CTLA4 therapy by modulating the tumor microenvironment. Oncogene, 2022, 41, 1364-1375.	2.6	45
4	Cell-Type Resolved Insights into the Cis-Regulatory Genome of NAFLD. Cells, 2022, 11, 870.	1.8	1
5	Impaired glucocorticoid receptor expression in liver disrupts feeding-induced gene expression, glucose uptake, and glycogen storage. Cell Reports, 2021, 37, 109938.	2.9	12
6	Multifaceted Control of GR Signaling and Its Impact on Hepatic Transcriptional Networks and Metabolism. Frontiers in Endocrinology, 2020, 11, 572981.	1.5	30
7	Collagen Density Modulates the Immunosuppressive Functions of Macrophages. Journal of Immunology, 2020, 205, 1461-1472.	0.4	64
8	C57BL/6J substrain differences in response to high-fat diet intervention. Scientific Reports, 2020, 10, 14052.	1.6	41
9	Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. PLoS Genetics, 2020, 16, e1008770.	1.5	20
10	Remote ischemic conditioning in active ulcerative colitis: An explorative randomized clinical trial. Scientific Reports, 2020, 10, 9537.	1.6	4
11	Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. , 2020, 16, e1008770.		0
12	Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. , 2020, 16, e1008770.		0
13	Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. , 2020, 16, e1008770.		0
14	Multiple mechanisms regulate H3 acetylation of enhancers in response to thyroid hormone. , 2020, 16, e1008770.		0
15	Meta-analysis of Chromatin Programming by Steroid Receptors. Cell Reports, 2019, 28, 3523-3534.e2.	2.9	23
16	Collagen density regulates the activity of tumor-infiltrating T cells. , 2019, 7, 68.		239
17	Editorial: Regulating Liver Transcriptional Networks by Endocrine, Extracellular, and Intrinsic Cues. Frontiers in Endocrinology, 2019, 10, 878.	1.5	0
18	Insulin signaling and reduced glucocorticoid receptor activity attenuate postprandial gene expression in liver. PLoS Biology, 2018, 16, e2006249.	2.6	45

Lars GrÃ, ntved

#	Article	IF	CITATIONS
19	High fat diet-induced changes of mouse hepatic transcription and enhancer activity can be reversed by subsequent weight loss. Scientific Reports, 2017, 7, 40220.	1.6	62
20	Genome-Wide Identification of Basic Helix–Loop–Helix and NF-1 Motifs Underlying GR Binding Sites in Male Rat Hippocampus. Endocrinology, 2017, 158, 1486-1501.	1.4	24
21	Noncanonical thyroid hormone signaling mediates cardiometabolic effects in vivo. Proceedings of the United States of America, 2017, 114, E11323-E11332.	3.3	93
22	Tumor-Associated Macrophages Derived from Circulating Inflammatory Monocytes Degrade Collagen through Cellular Uptake. Cell Reports, 2017, 21, 3662-3671.	2.9	99
23	Steroid Receptors Reprogram FoxA1 Occupancy through Dynamic Chromatin Transitions. Cell, 2016, 165, 593-605.	13.5	257
24	Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling. Nature Communications, 2015, 6, 7048.	5.8	106
25	Structural Modeling of GR Interactions with the SWI/SNF Chromatin Remodeling Complex and C/EBP. Biophysical Journal, 2015, 109, 1227-1239.	0.2	31
26	Live Cell Imaging Unveils Multiple Domain Requirements for In Vivo Dimerization of the Glucocorticoid Receptor. PLoS Biology, 2014, 12, e1001813.	2.6	113
27	Interactome Maps of Mouse Gene Regulatory Domains Reveal Basic Principles of Transcriptional Regulation. Cell, 2013, 155, 1507-1520.	13.5	299
28	C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements. EMBO Journal, 2013, 32, 1568-1583.	3.5	206
29	Reprogramming the Chromatin Landscape: Interplay of the Estrogen and Glucocorticoid Receptors at the Genomic Level. Cancer Research, 2013, 73, 5130-5139.	0.4	102
30	Rapid genome-scale mapping of chromatin accessibility in tissue. Epigenetics and Chromatin, 2012, 5, 10.	1.8	30
31	Impact of chromatin structure on PR signaling: Transition from local to global analysis. Molecular and Cellular Endocrinology, 2012, 357, 30-36.	1.6	21
32	MED14 Tethers Mediator to the N-Terminal Domain of Peroxisome Proliferator-Activated Receptor γ and Is Required for Full Transcriptional Activity and Adipogenesis. Molecular and Cellular Biology, 2010, 30, 2155-2169.	1.1	63
33	The PPARÎ ³ 2 A/B-Domain Plays a Gene-Specific Role in Transactivation and Cofactor Recruitment. Molecular Endocrinology, 2009, 23, 794-808.	3.7	54
34	The Adipogenic Acetyltransferase Tip60 Targets Activation Function 1 of Peroxisome Proliferator-Activated Receptor γ. Endocrinology, 2008, 149, 1840-1849.	1.4	60
35	Peroxisome Proliferator-Activated Receptor Subtype- and Cell-Type-Specific Activation of Genomic Target Genes upon Adenoviral Transgene Delivery. Molecular and Cellular Biology, 2006, 26, 5698-5714.	1.1	74
36	The Gene Encoding the Acyl-CoA-binding Protein Is Activated by Peroxisome Proliferator-activated Receptor Î ³ through an Intronic Response Element Functionally Conserved between Humans and Rodents. Journal of Biological Chemistry, 2002, 277, 26821-26830.	1.6	94