Mario Schelhaas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5619081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meningeal lymphatic endothelial cells fulfill scavenger endothelial cell function and cooperate with microglia in waste removal from the brain. Glia, 2022, 70, 35-49.	2.5	11
2	A Ran-binding protein facilitates nuclear import of human papillomavirus type 16. PLoS Pathogens, 2021, 17, e1009580.	2.1	10
3	Interview—Mario Schelhaas. Cellular Microbiology, 2020, 22, e13139.	1.1	0
4	Nuclear PYHIN proteins target the host transcription factor Sp1 thereby restricting HIV-1 in human macrophages and CD4+ T cells. PLoS Pathogens, 2020, 16, e1008752.	2.1	26
5	Epidermal Growth Factor Receptor and Abl2 Kinase Regulate Distinct Steps of Human Papillomavirus 16 Endocytosis. Journal of Virology, 2020, 94, .	1.5	18
6	Prophylactic Antiviral Activity of Sulfated Glycomimetic Oligomers and Polymers. Journal of the American Chemical Society, 2020, 142, 5252-5265.	6.6	56
7	Title is missing!. , 2020, 16, e1008752.		0
8	Title is missing!. , 2020, 16, e1008752.		0
9	Title is missing!. , 2020, 16, e1008752.		0
10	Title is missing!. , 2020, 16, e1008752.		0
11	Infectious Entry of Merkel Cell Polyomavirus. Journal of Virology, 2019, 93, .	1.5	34
12	Extracellular Conformational Changes in the Capsid of Human Papillomaviruses Contribute to Asynchronous Uptake into Host Cells. Journal of Virology, 2018, 92, .	1.5	40
13	Actin dynamics in host–pathogen interaction. FEBS Letters, 2018, 592, 3658-3669.	1.3	54
14	Viruses and cancer: molecular relations and perspectives. Biological Chemistry, 2017, 398, 815-816.	1.2	5
15	A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry. PLoS Pathogens, 2017, 13, e1006308.	2.1	52
16	Viral Genome Tethering to Host Cell Chromatin: Cause and Consequences. Traffic, 2016, 17, 327-340.	1.3	24
17	Kallikrein-8 Proteolytically Processes Human Papillomaviruses in the Extracellular Space To Facilitate Entry into Host Cells. Journal of Virology, 2015, 89, 7038-7052.	1.5	78
18	Fluorescently Labeled Human Papillomavirus Pseudovirions for Use in Virus Entry Experiments. Current Protocols in Microbiology, 2015, 37, 148.4.1-22.	6.5	4

MARIO SCHELHAAS

#	Article	IF	CITATIONS
19	Large Scale RNAi Reveals the Requirement of Nuclear Envelope Breakdown for Nuclear Import of Human Papillomaviruses. PLoS Pathogens, 2014, 10, e1004162.	2.1	135
20	Concepts of papillomavirus entry into host cells. Current Opinion in Virology, 2014, 4, 24-31.	2.6	69
21	Systematic Analysis of Endocytosis by Cellular Perturbations. Methods in Molecular Biology, 2014, 1174, 19-46.	0.4	13
22	The Evolving Field of Human Papillomavirus Receptor Research: a Review of Binding and Entry. Journal of Virology, 2013, 87, 6062-6072.	1.5	148
23	Human Papillomavirus Types 16, 18, and 31 Share Similar Endocytic Requirements for Entry. Journal of Virology, 2013, 87, 7765-7773.	1.5	60
24	Heparin increases the infectivity of Human Papillomavirus Type 16 independent of cell surface proteoglycans and induces L1 epitope exposure. Cellular Microbiology, 2013, 15, n/a-n/a.	1.1	57
25	Entry of Human Papillomavirus Type 16 by Actin-Dependent, Clathrin- and Lipid Raft-Independent Endocytosis. PLoS Pathogens, 2012, 8, e1002657.	2.1	238
26	Singleâ€cell analysis of population context advances RNAi screening at multiple levels. Molecular Systems Biology, 2012, 8, 579.	3.2	153
27	Principles of polyoma- and papillomavirus uncoating. Medical Microbiology and Immunology, 2012, 201, 427-436.	2.6	17
28	Analysis of Virus Entry and Cellular Membrane Dynamics by Single Particle Tracking. Methods in Enzymology, 2012, 506, 63-80.	0.4	15
29	Virus Entry by Endocytosis. Annual Review of Biochemistry, 2010, 79, 803-833.	5.0	855
30	Come in and take your coat off - how host cells provide endocytosis for virus entry. Cellular Microbiology, 2010, 12, 1378-1388.	1.1	58
31	Human Papillomavirus Type 16 Entry: Retrograde Cell Surface Transport along Actin-Rich Protrusions. PLoS Pathogens, 2008, 4, e1000148.	2.1	136
32	Simian Virus 40 Depends on ER Protein Folding and Quality Control Factors for Entry into Host Cells. Cell, 2007, 131, 516-529.	13.5	285
33	TATA-binding protein and TBP-associated factors during herpes simplex virus type 1 infection: Localization at viral DNA replication sites. Virus Research, 2006, 115, 207-213.	1.1	15
34	Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells. Journal of General Virology, 2006, 87, 3483-3494.	1.3	56
35	Herpes simplex virus type 1 exhibits a tropism for basal entry in polarized epithelial cells. Journal of General Virology, 2003, 84, 2473-2484.	1.3	63
36	Cells infected with human papilloma pseudovirus display nuclear reorganization and heterogenous infection kinetics. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 0,	1.1	3