Annika Gillis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5618961/publications.pdf

Version: 2024-02-01

471509 302126 1,682 42 17 39 citations h-index g-index papers 43 43 43 1969 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Frontiers in Microbiology, 2019, 10, 302.	3.5	425
2	Taxonomy of prokaryotic viruses: 2017 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Archives of Virology, 2018, 163, 1125-1129.	2.1	172
3	Taxonomy of prokaryotic viruses: 2018-2019 update from the ICTV Bacterial and Archaeal Viruses Subcommittee. Archives of Virology, 2020, 165, 1253-1260.	2.1	144
4	Versatile Antagonistic Activities of Soil-Borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and Other Potato Pathogens. Frontiers in Microbiology, 2018, 9, 143.	3 . 5	114
5	Phages Preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, Present and Future. Viruses, 2014, 6, 2623-2672.	3. 3	89
6	Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages. Systematic Biology, 2020, 69, 110-123.	5 . 6	89
7	Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses subcommittee. Archives of Virology, 2016, 161, 1095-1099.	2.1	83
8	Taxonomy of prokaryotic viruses: 2016 update from the ICTV bacterial and archaeal viruses subcommittee. Archives of Virology, 2017, 162, 1153-1157.	2.1	57
9	Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy. Nanoscale, 2012, 4, 1585-1591.	5 . 6	34
10	Role of plasmid plasticity and mobile genetic elements in the entomopathogen Bacillus thuringiensis serovar israelensis. FEMS Microbiology Reviews, 2018, 42, 829-856.	8.6	33
11	Influence of Lysogeny of Tectiviruses GIL01 and GIL16 on Bacillus thuringiensis Growth, Biofilm Formation, and Swarming Motility. Applied and Environmental Microbiology, 2014, 80, 7620-7630.	3.1	28
12	Prevalence, Genetic Diversity, and Host Range of Tectiviruses among Members of the Bacillus cereus Group. Applied and Environmental Microbiology, 2014, 80, 4138-4152.	3.1	28
13	Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis. Research in Microbiology, 2017, 168, 331-344.	2.1	28
14	Bacilysin within the Bacillus subtilis group: gene prevalence versus antagonistic activity against Gram-negative foodborne pathogens. Journal of Biotechnology, 2021, 327, 28-35.	3.8	28
15	Identification of five novel tectiviruses in Bacillus strains: analysis ofÂa highly variable region generating genetic diversity. Research in Microbiology, 2013, 164, 118-126.	2.1	24
16	Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: update of taxonomy changes in 2021. Archives of Virology, 2021, 166, 3239-3244.	2.1	24
17	Serratia marcescens associated with bell pepper (Capsicum annuum L.) soft-rot disease under greenhouse conditions. European Journal of Plant Pathology, 2014, 138, 1-8.	1.7	21
18	Detection of the cryptic prophage-like molecule pBtic235 in Bacillus thuringiensis subsp. israelensis. Research in Microbiology, 2017, 168, 319-330.	2.1	19

#	Article	IF	Citations
19	Modifications of cell wall polymers in Gram-positive bacteria by multi-component transmembrane glycosylation systems. Current Opinion in Microbiology, 2021, 60, 24-33.	5.1	19
20	First Report of Bell Pepper Soft-Rot Caused by Pectobacterium carotovorum subsp. brasiliense in Venezuela. Plant Disease, 2017, 101, 1671-1671.	1.4	18
21	Tomato Twisted Leaf Virus: A Novel Indigenous New World Monopartite Begomovirus Infecting Tomato in Venezuela. Viruses, 2019, 11, 327.	3.3	18
22	Bacillus thuringiensis improved isolation methodology from soil samples. Journal of Microbiological Methods, 2008, 75, 357-358.	1.6	17
23	Atomic force microscopy: A powerful tool for studying bacterial swarming motility. Micron, 2012, 43, 1304-1311.	2.2	16
24	pXO16 from Bacillus thuringiensis serovar israelensis: Almost 350 kb of terra incognita. Plasmid, 2015, 80, 8-15.	1.4	15
25	A novel T4SSâ€mediated DNA transfer used by pXO16, a conjugative plasmid from <i>Bacillus thuringiensis</i> serovar <i>israelensis</i> Environmental Microbiology, 2018, 20, 1550-1561.	3.8	15
26	Occurrence of Six Begomoviruses Infecting Tomato Fields in Venezuela and Genetic Characterization of <i>Potato Yellow Mosaic Virus</i> Isolates. Journal of Phytopathology, 2016, 164, 697-703.	1.0	14
27	Low genetic diversity of Banana bunchy top virus, with a sub-regional pattern of variation, in Democratic Republic of Congo. Virus Genes, 2016, 52, 900-905.	1.6	13
28	Horizontal transfer of chromosomal markers mediated by the large conjugative plasmid pXO16 from Bacillus thuringiensis serovar israelensis. Plasmid, 2017, 91, 76-81.	1.4	12
29	Characterization of PlyB221 and PlyP32, Two Novel Endolysins Encoded by Phages Preying on the Bacillus cereus Group. Viruses, 2020, 12, 1052.	3.3	12
30	Bacterial Sexuality at the Nanoscale. Nano Letters, 2018, 18, 5821-5826.	9.1	11
31	Complete Genome Sequence of Bacillus velezensis CN026 Exhibiting Antagonistic Activity against Gram-Negative Foodborne Pathogens. Genome Announcements, 2018, 6, .	0.8	7
32	Biocontrol potential of phage Deep-Blue against psychrotolerant Bacillus weihenstephanensis. Food Control, 2019, 102, 94-103.	5.5	7
33	Complete genome sequence of bacteriophage Deep-Purple, a novel member of the family Siphoviridae infecting Bacillus cereus. Archives of Virology, 2018, 163, 2555-2559.	2.1	6
34	Full-length genome sequencing of the mild strain of Tomato yellow leaf curl virus in Venezuela reveals a third introduction event of this virus in New World. Australasian Plant Disease Notes, 2014, 9, 1.	0.7	5
35	An improved method for rapid generation and screening of Bacillus thuringiensis phage-resistant mutants. Journal of Microbiological Methods, 2014, 106, 101-103.	1.6	5
36	Diversity and enzymatic potentialities of Bacillus sp. strains isolated from a polluted freshwater ecosystem in Cuba. World Journal of Microbiology and Biotechnology, 2018, 34, 28.	3.6	5

#	Article	IF	CITATIONS
37	Complete genome sequence of two tomato-infecting begomoviruses in Venezuela: evidence of a putative novel species and a novel recombinant strain. Archives of Virology, 2018, 163, 555-558.	2.1	5
38	Bacillus cytotoxicus Genomics: Chromosomal Diversity and Plasmidome Versatility. Frontiers in Microbiology, 2021, 12, 789929.	3.5	5
39	Complete Genome Sequence of Bacteriophage Deep-Blue Infecting Emetic Bacillus cereus. Genome Announcements, 2016, 4, .	0.8	4
40	Molecular and biological characterization of a new Tomato mild yellow leaf curl Aragua virus strain producing severe symptoms in tomato. Virus Genes, 2017, 53, 939-942.	1.6	1
41	Comparative Genomics of Prophages Sato and Sole Expands the Genetic Diversity Found in the Genus Betatectivirus. Microorganisms, 2021, 9, 1335.	3.6	1
42	Detecci \tilde{A}^3 n de genes cry 1 y cry 2 en cepas venezolanas de Bacillus thuringiensis y sus posibles aplicaciones en el campo de la Biotecnolog \tilde{A} a Agr \tilde{A} cola. IFMBE Proceedings, 2007, , 975-978.	0.3	0