Marija Kundakovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5618540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell type-specific chromatin accessibility analysis in the mouse and human brain. Epigenetics, 2022, 17, 202-219.	1.3	13
2	Chromatin domain alterations linked to 3D genome organization in a large cohort of schizophrenia and bipolar disorder brains. Nature Neuroscience, 2022, 25, 474-483.	7.1	25
3	Sex-specific multi-level 3D genome dynamics in the mouse brain. Nature Communications, 2022, 13, .	5.8	15
4	BET-ting on histone proteomics in schizophrenia. Trends in Neurosciences, 2022, , .	4.2	1
5	Sex hormone fluctuation and increased female risk for depression and anxiety disorders: From clinical evidence to molecular mechanisms. Frontiers in Neuroendocrinology, 2022, 66, 101010.	2.5	57
6	Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders. Nature Communications, 2021, 12, 3968.	5.8	48
7	DNA methyltransferase inhibitors and psychiatric disorders. , 2021, , 639-656.		Ο
8	Chromatin organization in the female mouse brain fluctuates across the oestrous cycle. Nature Communications, 2019, 10, 2851.	5.8	68
9	Sex and Estrous Cycle Effects on Anxiety- and Depression-Related Phenotypes in a Two-Hit Developmental Stress Model. Frontiers in Molecular Neuroscience, 2019, 12, 74.	1.4	61
10	Revealing the brain's molecular architecture. Science, 2018, 362, 1262-1263.	6.0	45
11	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	6.0	516
12	Comprehensive functional genomic resource and integrative model for the human brain. Science, 2018, 362, .	6.0	618
13	O10. Neuronal Chromatin Dynamics and Anxiety-Related Phenotypes Across the Estrous Cycle. Biological Psychiatry, 2018, 83, S112.	0.7	0
14	Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nature Neuroscience, 2018, 21, 1126-1136.	7.1	112
15	Practical Guidelines for High-Resolution Epigenomic Profiling of Nucleosomal Histones in Postmortem Human Brain Tissue. Biological Psychiatry, 2017, 81, 162-170.	0.7	48
16	Sex-Specific Epigenetics: Implications for Environmental Studies of Brain and Behavior. Current Environmental Health Reports, 2017, 4, 385-391.	3.2	11
17	Fearing the Mother's Virus: The Lasting Consequences of Prenatal Immune Activation on the Epigenome and Brain Function. Biological Psychiatry, 2017, 81, e23-e25.	0.7	2
18	The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders. Genes, 2017, 8, 104.	1.0	134

Marija Kundakovic

#	Article	lF	CITATIONS
19	DNA Methylation Signatures of Early Childhood Malnutrition Associated With Impairments in Attention and Cognition. Biological Psychiatry, 2016, 80, 765-774.	0.7	124
20	Epigenetic Basis of Mental Illness. Neuroscientist, 2016, 22, 447-463.	2.6	236
21	In Utero Bisphenol A Exposure and Epigenetic Programming of Neurobehavioral Outcomes. , 2016, , 67-92.		1
22	DNA methylation of BDNF as a biomarker of early-life adversity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6807-6813.	3.3	334
23	Interneuron epigenomes during the critical period of cortical plasticity: Implications for schizophrenia. Neurobiology of Learning and Memory, 2015, 124, 104-110.	1.0	36
24	The PsychENCODE project. Nature Neuroscience, 2015, 18, 1707-1712.	7.1	371
25	<i>CHRNA7</i> and <i>CHRFAM7A:</i> Psychosis and Smoking? Blame the Neighbors!. American Journal of Psychiatry, 2015, 172, 1054-1056.	4.0	6
26	Early-Life Experience, Epigenetics, and the Developing Brain. Neuropsychopharmacology, 2015, 40, 141-153.	2.8	232
27	Postnatal risk environments, epigenetics, and psychosis: putting the pieces together. Social Psychiatry and Psychiatric Epidemiology, 2014, 49, 1535-1536.	1.6	5
28	DNA Methyltransferase Inhibitors and Psychiatric Disorders. , 2014, , 497-514.		2
29	Prenatal Programming of Psychopathology: The Role of Epigenetic Mechanisms / PRENATALNO PROGRAMIRANJE PSIHIJATRIJSKIH POREMEĆAJA: ULOGA EPIGENETSKIH MEHANIZAMA. Journal of Medical Biochemistry, 2013, 32, 313-324.	0.7	10
30	Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9956-9961.	3.3	418
31	Sex-Specific and Strain-Dependent Effects of Early Life Adversity on Behavioral and Epigenetic Outcomes. Frontiers in Psychiatry, 2013, 4, 78.	1.3	141
32	Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects?. Epigenomics, 2012, 4, 303-315.	1.0	76
33	Epigenetic perspective on the developmental effects of bisphenol A. Brain, Behavior, and Immunity, 2011, 25, 1084-1093.	2.0	209
34	Epigenetic Regulation of GABAergic Targets in Psychiatry. , 2011, , 23-40.		0
35	ls There a Future for Histone Deacetylase Inhibitors in the Pharmacotherapy of Psychiatric Disorders?. Molecular Pharmacology, 2010, 77, 126-135.	1.0	162
36	The Reelin and GAD67 Promoters Are Activated by Epigenetic Drugs That Facilitate the Disruption of Local Repressor Complexes. Molecular Pharmacology, 2009, 75, 342-354.	1.0	130

Marija Kundakovic

#	Article	IF	CITATIONS
37	Characterization of the action of antipsychotic subtypes on valproate-induced chromatin remodeling. Trends in Pharmacological Sciences, 2009, 30, 55-60.	4.0	123
38	GABAergic promoter hypermethylation as a model to study the neurochemistry of schizophrenia vulnerability. Expert Review of Neurotherapeutics, 2009, 9, 87-98.	1.4	60
39	From trans-methylation to cytosine methylation: Evolution of the methylation hypothesis of schizophrenia. Epigenetics, 2009, 4, 144-149.	1.3	56
40	DNA Methyltransferase Inhibitors Coordinately Induce Expression of the Human Reelin and Glutamic Acid Decarboxylase 67 Genes. Molecular Pharmacology, 2007, 71, 644-653.	1.0	148
41	Induction of the reelin promoter by retinoic acid is mediated by Sp1. Journal of Neurochemistry, 2007, 103, 650-665.	2.1	39
42	The human reelin gene: Transcription factors (+), repressors (â^') and the methylation switch (+/â^') in schizophrenia. , 2006, 111, 272-286.		133
43	Histone deacetylase inhibitors decreasereelinpromoter methylationin vitro. Journal of Neurochemistry, 2005, 93, 483-492.	2.1	67
44	Pharmacological evaluation of selected arylpiperazines with atypical antipsychotic potential. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4263-4266.	1.0	24