Fen-Er Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5618503/publications.pdf

Version: 2024-02-01

		201385	315357
156	2,838	27	38
papers	citations	h-index	g-index
1 5 0	150	150	1622
158	158	158	1633
all docs	docs citations	times ranked	citing authors
an docs	does citations	times ranked	citing autnors

#	Article	IF	CITATIONS
1	Linker optimization of HEPT derivatives as potent non-nucleoside HIV-1 reverse transcriptase inhibitors: From S=O to CHOR. Chinese Chemical Letters, 2023, 34, 107663.	4.8	2
2	Synthesis of rac- <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi<math>\hat{1}</mml:mi<math></mml:math> -aryl propionaldehydes via branched-selective hydroformylation of terminal arylalkenes using water-soluble Rh-PNP catalyst. Chinese Chemical Letters, 2022, 33, 830-834.	4.8	8
3	The total synthesis of (<scp>â^²</scp>) -strempeliopine <i>via</i> palladium-catalyzed decarboxylative asymmetric allylic alkylation. Chemical Communications, 2022, 58, 1402-1405.	2.2	6
4	Room-temperature Pd-catalyzed methoxycarbonylation of terminal alkynes with high branched selectivity enabled by bisphosphine-picolinamide ligand. Chemical Communications, 2022, 58, 1041-1044.	2.2	14
5	Discovery of Novel Pyridine-Dimethyl-Phenyl-DAPY Hybrids by Molecular Fusing of Methyl-Pyrimidine-DAPYs and Difluoro-Pyridinyl-DAPYs: Improving the Druggability toward High Inhibitory Activity, Solubility, Safety, and PK. Journal of Medicinal Chemistry, 2022, 65, 2122-2138.	2.9	10
6	Diastereo- and Enantioselective Synthesis of Borylated 3-Hydroxyoxindoles by Addition of <i>gem</i> -Diborylalkanes to Isatins. Organic Letters, 2022, 24, 791-796.	2.4	5
7	Continuous flow technology-a tool for safer oxidation chemistry. Reaction Chemistry and Engineering, 2022, 7, 490-550.	1.9	25
8	Robust, scalable construction of an electrophilic deuterated methylthiolating reagent: facile access to SCD ₃ -containing scaffolds. Chemical Communications, 2022, 58, 3015-3018.	2.2	20
9	Engineered Cyclohexylamine Oxidase with Improved Activity and Stereoselectivity for Asymmetric Synthesis of a Bulky Dextromethorphan Precursor and Its Analogues. ChemCatChem, 2022, 14, .	1.8	3
10	Ligand-enabled palladium-catalyzed hydroesterification of vinyl arenes with high linear selectivity to access 3-arylpropanoate esters. Chemical Communications, 2022, 58, 3921-3924.	2.2	9
11	Asymmetric total synthesis of (+)-(2 <i>R</i> ,4′ <i>R</i> ,8′ <i>R</i>)-α-tocopherol enabled by enzymatic desymmetrization. Organic and Biomolecular Chemistry, 2022, 20, 2909-2921.	1.5	O
12	One-Pot Synthesis of Cyclopentenols from Vinylethylene Carbonates via Palladium-Catalyzed Decarboxylative Allylation and Cascade Oxidation-Cyclization. Bulletin of the Chemical Society of Japan, 2022, 95, 634-638.	2.0	5
13	Synergistic Pd/Cu Catalyzed Allylation of Cyclic Ketimine Esters with Vinylethylene Carbonates: Enantioselective Construction of Trisubstituted Allylic 2 <i>H</i> â€Pyrrole Derivatives. Advanced Synthesis and Catalysis, 2022, 364, 1849-1854.	2.1	8
14	Development of a Fully Continuousâ€Flow Approach Towards Asymmetric Total Synthesis of Tetrahydroprotoberberine Natural Alkaloids. Chemistry - A European Journal, 2022, 28, .	1.7	7
15	Stereoselective Total Syntheses of C18-Oxo Eburnamine-Vincamine Alkaloids. Organic Letters, 2022, 24, 2409-2413.	2.4	5
16	Development of an engineered ketoreductase with improved activity, stereoselectivity and relieved substrate inhibition for enantioselective synthesis of a key (R)-α-lipoic acid precursor. Molecular Catalysis, 2022, 522, 112208.	1.0	5
17	Palladium-Catalyzed Asymmetric [3 + 2] Annulation of Vinylethylene Carbonates with Alkenes Installed on Cyclic <i>N</i> -Sulfonyl Imines: Highly Enantio- and Diastereoselective Construction of Chiral Tetrahydrofuran Scaffolds Bearing Three Vicinal and Quaternary Stereocenters. Journal of Organic Chemistry, 2022, 87, 5166-5177.	1.7	9
18	Copper-Catalyzed Ullmann-Type Coupling and Decarboxylation Cascade of Arylhalides with Malonates to Access α-Aryl Esters. Organic Letters, 2022, 24, 115-120.	2.4	16

#	Article	IF	CITATIONS
19	Palladium-catalyzed base- and solvent-controlled chemoselective allylation of amino acids with allylic carbonates. Chinese Chemical Letters, 2022, 33, 4850-4855.	4.8	11
20	Asymmetric total synthesis of prostaglandin C ₂ TBS ether. Chemical Communications, 2022, 58, 6000-6003.	2.2	3
21	TfOH-catalyzed regioselective <i>N</i> ² -alkylation of indazoles with diazo compounds. Chemical Communications, 2022, 58, 6429-6432.	2.2	11
22	Atom- and step-economic 1,3-thiosulfonylation of activated allenes with thiosulfonates to access vinyl sulfones/sulfides. Chemical Communications, 2022, 58, 6765-6768.	2.2	11
23	Concise syntheses of 13-methylprotoberberine and 13-methyltetrahydroprotoberberine alkaloids. Chinese Chemical Letters, 2022, 33, 5080-5083.	4.8	4
24	Unified total synthesis of eburnamine-vincamine indole alkaloids based on catalytic asymmetric hydrogenation/lactamization cascade. Green Synthesis and Catalysis, 2022, 3, 291-293.	3.7	5
25	Asymmetric Synthesis of Spirooxazolidinone Oxindoles by the Thiourea atalyzed Aldol Reaction of 2â€lsocyanatomalonate Diesters. Advanced Synthesis and Catalysis, 2022, 364, 2067-2071.	2.1	2
26	Recent Progress in Solidâ€Phase Total Synthesis of Naturally Occurring Small Peptides. Advanced Synthesis and Catalysis, 2022, 364, 1934-1961.	2.1	10
27	Highly diastereo- and enantioselective synthesis of multisubstituted allylic amino acid derivatives by allylic alkylation of a chiral glycine-based nickel complex and vinylethylene carbonates. Organic and Biomolecular Chemistry, 2022, 20, 4894-4899.	1.5	3
28	Water-soluble diphosphine ligands for rhodium-catalyzed branch-selective hydroaminomethylation of vinyl arenes with anilines in water. Green Chemistry, 2022, 24, 4420-4424.	4.6	9
29	Recent advances using cyclopropanols and cyclobutanols in ring-opening asymmetric synthesis. Green Synthesis and Catalysis, 2022, 3, 219-226.	3.7	19
30	Structure-Based Discovery of Novel NH ₂ -Biphenyl-Diarylpyrimidines as Potent Non-Nucleoside Reverse Transcriptase Inhibitors with Significantly Improved Safety: From NH ₂ -Biphenyl-Diarylpyrimidine. Journal of Medicinal Chemistry, 2022, 65, 8478-8492.	2.9	4
31	Expansion of the S–CN-DABO scaffold to exploit the impact on inhibitory activities against the non-nucleoside HIV-1 reverse transcriptase. European Journal of Medicinal Chemistry, 2022, 238, 114512.	2.6	3
32	Structure-Based design of [(2-Hydroxyethoxy)methyl]-6-(phenylthio)-thymine derivatives as nonnucleoside HIV-1 reverse transcriptase Inhibitors: From HEPTs to Sulfinyl-substituted HEPTs. Bioorganic Chemistry, 2022, 126, 105880.	2.0	2
33	Continuous-flow synthesis of N,N′-bis(2,2,6,6-tetramethyl-4-piperidinyl)-1,6-hexanediamine (DTMPA) in a Micro fixed-bed reactor. Journal of Flow Chemistry, 2022, 12, 419-427.	1.2	3
34	Discovery of novel biphenyl-substituted pyridone derivatives as potent non-nucleoside reverse transcriptase inhibitors with promising oral bioavailability. European Journal of Medicinal Chemistry, 2022, 240, 114581.	2.6	5
35	Structure-based linker optimization of 6-(2-cyclohexyl-1-alkyl)-2-(2-oxo-2-phenylethylsulfanyl)pyrimidin-4(3H)-ones as potent non-nucleoside HIV-1 reverse transcriptase inhibitors. Chinese Chemical Letters, 2021, 32, 1020-1024.	4.8	7
36	Rh(<scp>iii</scp>)-Catalyzed three-component cascade annulation to produce the <i>N</i> occupyle chain of isoquinolone derivatives. Organic and Biomolecular Chemistry, 2021, 19, 561-567.	1.5	8

#	Article	IF	Citations
37	Recent Advances in Asymmetric Organomulticatalysis. Advanced Synthesis and Catalysis, 2021, 363, 352-387.	2.1	37
38	A unified strategy to prostaglandins: chemoenzymatic total synthesis of cloprostenol, bimatoprost, $PGF < sub > 2\hat{1} + \langle sub > 1, fluprostenol, and travoprost guided by biocatalytic retrosynthesis. Chemical Science, 2021, 12, 10362-10370.$	3.7	18
39	Palladium(<scp>ii</scp>)-catalyzed aerobic oxidative O–H/C–H isocyanide insertion: facile access to pyrrolo[2,1- <i>c</i>][1,4]benzoxazine derivatives. Organic and Biomolecular Chemistry, 2021, 19, 4364-4368.	1.5	3
40	Druggability modification strategies of the diarylpyrimidineâ€type nonâ€nucleoside reverse transcriptase inhibitors. Medicinal Research Reviews, 2021, 41, 1255-1290.	5.0	24
41	Catalytic Asymmetric Addition of Diorganozinc Reagents to Pyrazoleâ€4,5â€Diones and Indolineâ€2,3â€Diones. Chemistry - A European Journal, 2021, 27, 4302-4306.	1.7	11
42	Carbon dioxide cycle via electrocatalysis: Electrochemical carboxylation of CO2 and decarboxylative functionalization of carboxylic acids. Green Synthesis and Catalysis, 2021, 2, 19-26.	3.7	91
43	Palladiumâ€Catalyzed Allylation of Vinylethylene Carbonates with ⟨i⟩β⟨/i⟩â€Ketophosphonates: Stereoselective Synthesis of (⟨i⟩Z⟨/i⟩)â€Homoallylic Phosphonates. ChemCatChem, 2021, 13, 1753-1762.	1.8	12
44	Stereoselective Synthesis of $(\langle i \rangle Z \langle i \rangle)$ $\hat{a} \in D$ ihomoallylic Phosphonates with Quaternary Carbon Center by Palladium $\hat{a} \in C$ atalyzed Bisallylation of Vinylethyene Carbonates with $\langle i \rangle \hat{l}^2 \langle i \rangle \hat{a} \in K$ etophosphonates. Asian Journal of Organic Chemistry, 2021, 10, 757-761.	1.3	8
45	Timeâ€Economical Synthesis of Diarylacetates Enabled by TfOHâ€Catalyzed Arylation of <i>α</i> â€Arylâ€ <i>α</i> â€Arylâ€ <i>α</i>	1.8	11
46	Application of Ketoreductase in Asymmetric Synthesis of Pharmaceuticals and Bioactive Molecules: An Update (2018–2020). Chemical Record, 2021, 21, 1611-1630.	2.9	40
47	Hydrophobic Pocket Occupation Design of Difluoro-Biphenyl-Diarylpyrimidines as Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors: from N-Alkylation to Methyl Hopping on the Pyrimidine Ring. Journal of Medicinal Chemistry, 2021, 64, 5067-5081.	2.9	12
48	Synergistic Pd/Cu catalysis for stereoselective allylation of vinylethylene carbonates with glycine iminoesters: Enantioselective access to diverse trisubstituted allylic amino acid derivatives. Green Synthesis and Catalysis, 2021, 2, 228-232.	3.7	37
49	TfOH-Catalyzed $[4+1]$ Annulation of <i>p</i> -Quinone Methides with $\hat{l}\pm$ -Aryl Diazoacetates: Straightforward Access to Highly Functionalized 2,3-Dihydrobenzofurans. Journal of Organic Chemistry, 2021, 86, 7625-7635.	1.7	20
50	Enantio―and Diastereoselective Synthesis of Chiral Syn â€Aryl βâ€Hydroxy αâ€Amino Esters via Biocatalytic Dynamic Reductive Kinetic Resolution. Asian Journal of Organic Chemistry, 2021, 10, 1700-1703.	1.3	3
51	Total Synthesis of (â^')-Canadine, (â^')-Rotundine, (â^')-Sinactine, and (â^')-Xylopinine Using a Last-Step Enantioselective Ir-Catalyzed Hydrogenation. Journal of Organic Chemistry, 2021, 86, 8143-8153.	1.7	10
52	Chemical space exploration of novel naphthyl-carboxamide-diarylpyrimidine derivatives with potent anti-HIV-1 activity. Bioorganic Chemistry, 2021, 111, 104905.	2.0	3
53	Continuous-Flow Asymmetric Synthesis of (3 <i>R</i>)-3-Hydroxyl-5-hexenoates with Co-Immobilized Ketoreductase and <i>Lactobacillus kefir</i> Dehydrogenase Integrating Greener Inline Microfluidic Liquid–Liquid Extractors and Membrane Separators. ACS Sustainable Chemistry and Engineering, 2021, 9, 8990-9000.	3.2	15
54	Improving Druggability of Novel Diarylpyrimidine NNRTIs by a Fragment-Based Replacement Strategy: From Biphenyl-DAPYs to Heteroaromatic-Biphenyl-DAPYs. Journal of Medicinal Chemistry, 2021, 64, 10297-10311.	2.9	15

#	Article	IF	Citations
55	Phosphorus coordinated Rh single-atom sites on nanodiamond as highly regioselective catalyst for hydroformylation of olefins. Nature Communications, 2021, 12, 4698.	5.8	78
56	Fully Continuous Flow Synthesis of 3-Chloro-4-oxopentyl Acetate: An Important Intermediate for Vitamin B1. Organic Process Research and Development, 2021, 25, 2020-2028.	1.3	7
57	Catalytic <i>Syn</i> -Selective Nitroaldol Approach to Amphenicol Antibiotics: Evolution of a Unified Asymmetric Synthesis of (â^')-Chloramphenicol, (â^')-Azidamphenicol, (+)-Thiamphenicol, and (+)-Florfenicol. Journal of Organic Chemistry, 2021, 86, 11557-11570.	1.7	17
58	Transition metal-catalyzed branch-selective hydroformylation of olefins in organic synthesis. Green Synthesis and Catalysis, 2021, 2, 247-266.	3.7	42
59	Design of the naphthyl-diarylpyrimidines as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) via structure-based extension into the entrance channel. European Journal of Medicinal Chemistry, 2021, 226, 113868.	2.6	10
60	TfOH-Catalyzed N–H Insertion of α-Substituted-α-Diazoesters with Anilines Provides Access to Unnatural α-Amino Esters. Journal of Organic Chemistry, 2021, 86, 3223-3231.	1.7	16
61	Stereoselective total synthesis of $(\hat{A}\pm)$ -vindeburnol and $(\hat{A}\pm)$ -16- <i>epi</i> rvindeburnol. Chemical Communications, 2021, 57, 11669-11672.	2.2	5
62	Nickel-catalyzed cyclization of 1,7-enynes for the selective synthesis of dihydrocyclobuta[c]quinolin-3-ones and benzo[b]azocin-2-ones. Chemical Communications, 2021, 57, 11657-11660.	2.2	6
63	Fully Continuous Flow Synthesis of 5-(Aminomethyl)-2-methylpyrimidin-4-amine: A Key Intermediate of Vitamin B ₁ . Organic Process Research and Development, 2021, 25, 2331-2337.	1.3	9
64	Linear Selective Hydroformylation of 2â€Arylpropenes Using Waterâ€Soluble Rhâ€PNP Complex: Straightforward Access to 3â€Arylâ€Butyraldehydes. ChemCatChem, 2021, 13, 5073-5077.	1.8	3
65	Palladium-Catalyzed Asymmetric Cross-Coupling Reactions of Cyclobutanols and Unactivated Olefins. Organic Letters, 2021, 23, 9520-9525.	2.4	15
66	Small-Molecule Inhibitors of Necroptosis: Current Status and Perspectives. Journal of Medicinal Chemistry, 2020, 63, 1490-1510.	2.9	56
67	Molecular Hybridization-Inspired Optimization of Diarylbenzopyrimidines as HIV-1 Nonnucleoside Reverse Transcriptase Inhibitors with Improved Activity against K103N and E138K Mutants and Pharmacokinetic Profiles. ACS Infectious Diseases, 2020, 6, 787-801.	1.8	26
68	Fragment hopping-based discovery of novel sulfinylacetamide-diarylpyrimidines (DAPYs) as HIV-1 nonnucleoside reverse transcriptase inhibitors. European Journal of Medicinal Chemistry, 2020, 185, 111874.	2.6	9
69	Indazolyl-substituted piperidin-4-yl-aminopyrimidines as HIV-1 NNRTIs: Design, synthesis and biological activities. European Journal of Medicinal Chemistry, 2020, 186, 111864.	2.6	21
70	Improving the positional adaptability: structure-based design of biphenyl-substituted diaryltriazines as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Acta Pharmaceutica Sinica B, 2020, 10, 344-357.	5.7	29
71	Fragment-based discovery of sulfur-containing diarylbenzopyrimidines as novel nonnucleoside reverse transcriptase inhibitors. Chinese Chemical Letters, 2020, 31, 764-768.	4.8	25
72	Organocatalytic Asymmetric Domino Oxa-Michael–Mannich-[1,3]-Amino Rearrangement Reaction of ⟨i⟩N⟨/i⟩-Tosylsalicylimines to α,β-Unsaturated Aldehydes by Diarylprolinol Silyl Ethers. Journal of Organic Chemistry, 2020, 85, 4011-4018.	1.7	8

#	Article	IF	Citations
73	Development of non-nucleoside reverse transcriptase inhibitors (NNRTIs): our past twenty years. Acta Pharmaceutica Sinica B, 2020, 10, 961-978.	5.7	79
74	Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. Green Synthesis and Catalysis, 2020, 1, 121-133.	3.7	70
75	Unified Strategy to Amphenicol Antibiotics: Asymmetric Synthesis of (â^')-Chloramphenicol, (â^')-Azidamphenicol, and (+)-Thiamphenicol and Its (+)-3-Floride. Journal of Organic Chemistry, 2020, 85, 15360-15367.	1.7	13
76	Design strategies for long-acting anti-HIV pharmaceuticals. Current Opinion in Pharmacology, 2020, 54, 158-165.	1.7	12
77	Transition-metal and oxidant-free approach for the synthesis of diverse N-heterocycles by TMSCl activation of isocyanides. RSC Advances, 2020, 10, 29257-29262.	1.7	10
78	Asymmetric catalytic hydrogenation of imines and enamines in natural product synthesis. Green Synthesis and Catalysis, 2020, 1, 26-41.	3.7	76
79	Asymmetric catalysis in synthetic strategies for chiral benzothiazepines. Green Synthesis and Catalysis, 2020, 1, 12-25.	3.7	37
80	TfOH-Catalyzed Cascade C–H Activation/Lactonization of Phenols with α-Aryl-α-diazoesters: Rapid Access to α-Aryl Benzofuranones. Journal of Organic Chemistry, 2020, 85, 14916-14925.	1.7	11
81	Development of a Practical, Biocatalytic Synthesis of tert-Butyl (R)-3-Hydroxyl-5-hexenoate: A Key Intermediate to the Statin Side Chain. Organic Process Research and Development, 2020, 24, 1700-1706.	1.3	12
82	Palladium-Catalyzed Regio- and Stereoselective Cross-Coupling of Vinylethylene Carbonates with Ketimine Esters to Generate $(\langle i\rangle Z\langle i\rangle)$ -Tri- and Tetra-substituted Allylic Amino Acid Derivatives. Organic Letters, 2020, 22, 4135-4140.	2.4	27
83	Enantioselective Total Syntheses of (â^')â€20â€×i>epià€Vincamine and (â^')â€20â€ <i>epi</i> â€Eburnamonine Irâ€Catalyzed Asymmetric Imine Hydrogenation/Lactamization Cascade. Chemistry - A European Journal, 2020, 26, 10439-10443.	e by 1.7	17
84	Asymmetric Alkynylation of Cyclic <i>N</i> â€Sulfonyl Imines using Synergistic Chiral Phosphoric Acid/Copper Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 3202-3207.	2.1	11
85	Access to chiral \hat{l} -substituted- \hat{l}^2 -hydroxy arylphosphonates enabled by biocatalytic dynamic reductive kinetic resolution. Organic and Biomolecular Chemistry, 2020, 18, 2672-2677.	1.5	9
86	Stereoselective Synthesis of (\hat{a}^{-1}) -Verazine and Congeners via a Cascade Ring-Switching Process of Furostan-26-acid. Organic Letters, 2020, 22, 2761-2765.	2.4	2
87	Specific Z-Selectivity in the Oxidative Isomerization of Allyl Ethers to Generate Geometrically Defined Z-Enol Ethers Using a Cobalt(II)(salen) Complex Catalyst. Journal of Organic Chemistry, 2020, 85, 5321-5329.	1.7	24
88	Asymmetric Synthesis of a Key Dextromethorphan Intermediate and Its Analogues Enabled by a New Cyclohexylamine Oxidase: Enzyme Discovery, Reaction Development, and Mechanistic Insight. Journal of Organic Chemistry, 2020, 85, 5598-5614.	1.7	9
89	Asymmetric synthesis of (â^')-solanidine and (â^')-tomatidenol. Organic and Biomolecular Chemistry, 2020, 18, 3169-3176.	1.5	7
90	Design of Biphenyl-Substituted Diarylpyrimidines with a Cyanomethyl Linker as HIV-1 NNRTIs via a Molecular Hybridization Strategy. Molecules, 2020, 25, 1050.	1.7	11

#	Article	IF	Citations
91	Bioisosterism-based design and enantiomeric profiling of chiral hydroxyl-substituted biphenyl-diarylpyrimidine nonnucleoside HIV-1 reverse transcriptase inhibitors. European Journal of Medicinal Chemistry, 2020, 202, 112549.	2.6	13
92	Experimental and Numerical Studies of the Phase-Transfer-Catalyzed Wittig Reaction in Liquid–Liquid Slug-Flow Microchannels. Industrial & Engineering Chemistry Research, 2020, 59, 4397-4410.	1.8	7
93	Asymmetric catalysis in direct nitromethane-free Henry reactions. RSC Advances, 2020, 10, 2313-2326.	1.7	28
94	Privileged scaffold inspired design of novel oxime-biphenyl-DAPYs in treatment of HIV-1. Bioorganic Chemistry, 2020, 99, 103825.	2.0	14
95	Scaffold Hopping in Discovery of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors: From CH(CN)-DABOs to CH(CN)-DAPYs. Molecules, 2020, 25, 1581.	1.7	8
96	Pharmacophore-fusing design of pyrimidine sulfonylacetanilides as potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorganic Chemistry, 2020, 96, 103595.	2.0	11
97	Conformational restriction design of thiophene-biphenyl-DAPY HIV-1 non-nucleoside reverse transcriptase inhibitors. European Journal of Medicinal Chemistry, 2019, 182, 111603.	2.6	22
98	Direct Synthesis of Substituted (<i>Z</i>)â€Allylic Sulfones by Palladiumâ€Catalyzed Sulfonylation of Vinylethylene Carbonates with Sodium Sulfinates. ChemCatChem, 2019, 11, 4720-4724.	1.8	27
99	Ligand-Based Design of Nondimethylphenyl-Diarylpyrimidines with Improved Metabolic Stability, Safety, and Oral Pharmacokinetic Profiles. Journal of Medicinal Chemistry, 2019, 62, 11430-11436.	2.9	32
100	Follow on-based optimization of the biphenyl-DAPYs as HIV-1 nonnucleoside reverse transcriptase inhibitors against the wild-type and mutant strains. Bioorganic Chemistry, 2019, 89, 102974.	2.0	21
101	Ketoreductase catalyzed stereoselective bioreduction of \hat{l}_{\pm} -nitro ketones. Organic and Biomolecular Chemistry, 2019, 17, 3575-3580.	1.5	23
102	Access to a Key Building Block for the Prostaglandin Family via Stereocontrolled Organocatalytic Baeyer–Villiger Oxidation. Angewandte Chemie - International Edition, 2019, 58, 9923-9927.	7.2	31
103	The Chapman rearrangement in a continuous-flow microreactor. RSC Advances, 2019, 9, 9270-9280.	1.7	9
104	Chloramphenicol Base: A New Privileged Chiral Scaffold in Asymmetric Catalysis. ChemCatChem, 2019, 11, 2043-2053.	1.8	8
105	Substituent Positionâ€Controlled Stereoselectivity in Enzymatic Reduction of Diaryl―and Aryl(heteroaryl)methanones. Advanced Synthesis and Catalysis, 2019, 361, 1859-1865.	2.1	17
106	Discovery of biphenyl-substituted diarylpyrimidines as non-nucleoside reverse transcriptase inhibitors with high potency against wild-type and mutant HIV-1. European Journal of Medicinal Chemistry, 2018, 145, 726-734.	2.6	42
107	Squaramideâ€Linked Chloramphenicol Base Hybrid Catalysts for the Asymmetric Michael Addition of 2,3â€Dihydrobenzofuranâ€2â€carboxylates to Nitroolefins. European Journal of Organic Chemistry, 2018, 2018, 99-103.	1.2	14
108	Chiral Syn-1,3-diol Derivatives via a One-Pot Diastereoselective Carboxylation/ Bromocyclization of Homoallylic Alcohols. IScience, 2018, 9, 513-520.	1.9	8

#	Article	IF	CITATIONS
109	Development of Novel Chloramphenicol Scaffoldâ€Based Chiral Hydroxyl Oxazoline Ligands and Their Application to the Asymmetric Alkynylation of Isatins. Advanced Synthesis and Catalysis, 2018, 360, 3497-3501.	2.1	24
110	Asymmetric Synthesis of Atorvastatin Calcium through Intramolecular Oxidative Oxygenâ€Nucleophilic Bromocyclization. European Journal of Organic Chemistry, 2017, 2017, 3681-3688.	1.2	11
111	Enantioselective \hat{l}^2 -hydroxy thioesters formation via decarboxylative aldol reactions of malonic acid half thioesters with aldehydes promoted by chloramphenicol derived sulfonamides 1. Tetrahedron, 2017, 73, 5055-5062.	1.0	21
112	Chloramphenicol base chemistry. Part 10 1: Asymmetric synthesis of \hat{l}_{\pm} -hydroxy chiral alcohols via intramolecular Michael additions of \hat{l}^3 -hydroxy- \hat{l}_{\pm} , \hat{l}^2 -unsaturated enones with chloramphenicol base derived bifunctional urea organocatalysts. Tetrahedron, 2017, 73, 2793-2800.	1.0	12
113	Recent advances in asymmetric total synthesis of prostaglandins. Organic and Biomolecular Chemistry, 2017, 15, 6281-6301.	1.5	66
114	Chloramphenicol base chemistry. Part 11: 1 chloramphenicol base-derived thiourea-catalyzed enantioselective Michael addition of malononitrile to \hat{l}_{\pm} , \hat{l}^{2} -unsaturated ketones. Tetrahedron: Asymmetry, 2017, 28, 921-929.	1.8	12
115	Development of Bifunctional Thiourea Organocatalysts Derived from a Chloramphenicol Base Scaffold and their Use in the Enantioselective Alcoholysis of <i>meso</i> Cyclic Anhydrides. ChemCatChem, 2016, 8, 2249-2253.	1.8	17
116	Stereocontrolled synthesis of rosuvastatin calcium via iodine chloride-induced intramolecular cyclization. Organic and Biomolecular Chemistry, 2016, 14, 1363-1369.	1.5	9
117	Catalytic asymmetric transfer hydrogenation/dynamic kinetic resolution: an efficient synthesis of florfenicol. Tetrahedron, 2016, 72, 1787-1793.	1.0	20
118	Stereoselective synthesis of 3-hydroxy-3-methylglutaryl–coenzyme A reductase inhibitors. Tetrahedron, 2015, 71, 8487-8510.	1.0	30
119	Hybrid chemistry. Part 4: Discovery of etravirine–VRX-480773 hybrids as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 4248-4255.	1.4	25
120	Anti-HIV diarylpyrimidine–quinolone hybrids and their mode of action. Bioorganic and Medicinal Chemistry, 2015, 23, 3860-3868.	1.4	25
121	Discovery of piperidin-4-yl-aminopyrimidine derivatives as potent non-nucleoside HIV-1 reverse transcriptase inhibitors. European Journal of Medicinal Chemistry, 2015, 97, 1-9.	2.6	23
122	Pyrimidine sulfonylacetanilides with improved potency against key mutant viruses of HIV-1 by specific targeting of a highly conserved residue. European Journal of Medicinal Chemistry, 2015, 102, 215-222.	2.6	23
123	Structural modification of diarylpyrimidine derivatives as HIV-1 reverse transcriptase inhibitors. Medicinal Chemistry Research, 2015, 24, 220-225.	1.1	11
124	An Efficient Synthesis of Katsube Nitrile: A Key Building Block for Eburnamine-Vincamine Alkaloids. Synthesis, 2014, 46, 1506-1510.	1.2	4
125	Synthesis and biological evaluation of CHX-DAPYs as HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 3220-3226.	1.4	16
126	Structural modifications of CH(OH)-DAPYs as new HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 2535-2541.	1.4	12

#	Article	IF	CITATIONS
127	Synthetic studies on statins. Part 3: A facile synthesis of rosuvastatin calcium through catalytic enantioselective allylation strategy. Tetrahedron, 2014, 70, 5794-5799.	1.0	15
128	Asymmetric Synthesis of the HMG-CoA Reductase Inhibitor Atorvastatin Calcium: An Organocatalytic Anhydride Desymmetrization and Cyanide-Free Side Chain Elongation Approach. Journal of Organic Chemistry, 2014, 79, 2723-2728.	1.7	40
129	Design and synthesis of a new series of modified CH-diarylpyrimidines as drug-resistant HIV non-nucleoside reverse transcriptase inhibitors. European Journal of Medicinal Chemistry, 2014, 82, 600-611.	2.6	28
130	Synthetic studies on statins. Part 1: a short and cyanide-free synthesis of atorvastatin calcium via an enantioselective aldol strategy. Tetrahedron: Asymmetry, 2013, 24, 207-211.	1.8	18
131	An Efficient Enantioselective Synthesis of Florfenicol Based on Sharpless Asymmetric Dihydroxylation. Synthesis, 2012, 44, 699-704.	1.2	7
132	Dihydro-alkoxyl-benzyl-oxopyrimidine Derivatives (DABOs) As Non-Nucleoside Reverse Transcriptase Inhibitors: An Update Review (2001-2011). Current Medicinal Chemistry, 2012, 19, 152-162.	1.2	27
133	Development of Two Scalable Syntheses of 4-Amino-5-aminomethyl-2-methylpyrimidine: Key Intermediate for Vitamin B ₁ . Organic Process Research and Development, 2012, 16, 57-60.	1.3	18
134	Chiral resolution, absolute configuration assignment and biological activity of racemic diarylpyrimidine CH(OH)-DAPY as potent nonnucleoside HIV-1 reverse transcriptase inhibitors. European Journal of Medicinal Chemistry, 2012, 53, 229-234.	2.6	28
135	An efficient enantioselective synthesis of florfenicol via asymmetric aziridination. Tetrahedron, 2011, 67, 9199-9203.	1.0	31
136	An efficient enantioselective synthesis of florfenicol via a vanadium-catalyzed asymmetric epoxidation. Tetrahedron: Asymmetry, 2011, 22, 1337-1341.	1.8	27
137	Synthesis and structure–activity relationship of novel diarylpyrimidines with hydromethyl linker (CH(OH)-DAPYs) as HIV-1 NNRTIs. Bioorganic and Medicinal Chemistry, 2011, 19, 5117-5124.	1.4	26
138	Design, synthesis and biological evaluation of cycloalkyl arylpyrimidines (CAPYs) as HIV-1 NNRTIs. Bioorganic and Medicinal Chemistry, 2011, 19, 7093-7099.	1.4	23
139	Synthesis and biological evaluation of naphthyl phenyl ethers (NPEs) as novel nonnucleoside HIV-1 reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 4220-4226.	1.4	15
140	Synthesis and Antiâ∈HIV Activity of Arylâ∈2â∈{(4â∈cyanophenyl)amino]â∈4â∈pyrimidinone hydrazones as Potent Nonâ∈nucleoside Reverse Transcriptase Inhibitors. ChemMedChem, 2011, 6, 2225-2232.	1.6	31
141	A Facile and Efficient Asymmetric Synthesis of Florfenicol. Synlett, 2011, 2011, 2883-2885.	1.0	4
142	Lead Optimization of Diarylpyrimidines as Nonâ€nucleoside Inhibitors of HIVâ€1 Reverse Transcriptase. ChemMedChem, 2010, 5, 837-840.	1.6	28
143	Synthesis and biological evaluation of 4-(hydroxyimino)arylmethyl diarylpyrimidine analogues as potential non-nucleoside reverse transcriptase inhibitors against HIV. Bioorganic and Medicinal Chemistry, 2010, 18, 2370-2374.	1.4	28
144	Synthesis and anti-HIV activity of 2-naphthyl substituted DAPY analogues as non-nucleoside reverse transcriptase inhibitors. Bioorganic and Medicinal Chemistry, 2010, 18, 4601-4605.	1.4	33

#	Article	IF	CITATIONS
145	Hybrid diarylbenzopyrimidine non-nucleoside reverse transcriptase inhibitors as promising new leads for improved anti-HIV-1 chemotherapy. Bioorganic and Medicinal Chemistry, 2010, 18, 5039-5047.	1.4	31
146	Structural Modifications of DAPY Analogues with Potent Antiâ€HIVâ€1 Activity. ChemMedChem, 2009, 4, 219-224.	1.6	43
147	Synthesis and in vitro anti-HIV evaluation of a new series of 6-arylmethyl-substituted S-DABOs as potential non-nucleoside HIV-1 reverse transcriptase inhibitors. European Journal of Medicinal Chemistry, 2009, 44, 1016-1023.	2.6	21
148	Synthetic Studies on Camptothecins. Part 1. Helvetica Chimica Acta, 2008, 91, 2057-2061.	1.0	18
149	Solid-Phase Synthesis of Solanesol. ACS Combinatorial Science, 2008, 10, 605-610.	3.3	10
150	Synthesis and Anti-HIV-1 Activity Evaluation of 5-Alkyl-2-alkylthio-6-(arylcarbonyl or) Tj ETQq0 0 0 rgBT /Overlock 1 Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 1778-1786.	0 Tf 50 54 2.9	17 Td (α-cy: 44
151	Nonnucleoside HIV-1 reverse transcriptase inhibitors; part 3. Synthesis and antiviral activity of 5-alkyl-2-[(aryl and alkyloxyl-carbonylmethyl)thio]-6-(1-naphthylmethyl) pyrimidin-4(3H)-ones. Bioorganic Chemistry, 2004, 32, 536-548.	2.0	18
152	5-Alkyl-2-[(aryl and alkyloxylcarbonylmethyl)thio]-6-(1-naphthylmethyl) pyrimidin-4(3H)-ones as an unique HIV reverse transcriptase inhibitors of S-DABO series. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3173-3176.	1.0	46
153	Copper-catalyzed asymmetric alkynylation of pyrazole-4,5-diones using chloramphenicol base-derived hydroxyl oxazoline ligands. Organic Chemistry Frontiers, 0, , .	2.3	2
154	Organocatalytic atroposelective N-alkylation: divergent synthesis of axially chiral sulfonamides and biaryl amino phenols. Organic Chemistry Frontiers, $0, \dots$	2.3	8
155	Enantioselective Synthesis of Chiral 3â€Alkynylâ€3â€hydroxyindolinâ€2â€ones by Zn/bis(sulfonamide)–diamine Catalyzed Asymmetric Addition of Alkynes to Isatins. Asian Journal of Organic Chemistry, 0, , .	1.3	2
156	Sixâ€Step Continuous Flow Synthesis of Diclofenac Sodium via Cascade Etherification/Smiles Rearrangement Strategy: Tackling the Issues of Batch Processing. Chemistry - A European Journal, 0, , .	1.7	3