Patricia A Digiuseppe Champion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5618142/publications.pdf Version: 2024-02-01

		430874	454955
31	2,160	18	30
papers	citations	h-index	g-index
31	31	31	2250
all docs	docs citations	times ranked	citing authors

PATRICIA A DIGIUSEPPE

#	Article	IF	CITATIONS
1	Type VII secretion — mycobacteria show the way. Nature Reviews Microbiology, 2007, 5, 883-891.	28.6	628
2	C-Terminal Signal Sequence Promotes Virulence Factor Secretion in Mycobacterium tuberculosis. Science, 2006, 313, 1632-1636.	12.6	200
3	Signal Detection and Target Gene Induction by the CpxRA Two-Component System. Journal of Bacteriology, 2003, 185, 2432-2440.	2.2	198
4	ESXâ€∃ secreted virulence factors are recognized by multiple cytosolic AAA ATPases in pathogenic mycobacteria. Molecular Microbiology, 2009, 73, 950-962.	2.5	140
5	Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry as an Alternative Proteomics Platform to Ultraperformance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry for Samples of Intermediate Complexity. Analytical Chemistry, 2012, 84, 1617-1622.	6.5	121
6	Protein secretion systems in Mycobacteria. Cellular Microbiology, 2007, 9, 1376-1384.	2.1	119
7	The Carbonic Anhydrase Inhibitor Ethoxzolamide Inhibits the Mycobacterium tuberculosis PhoPR Regulon and Esx-1 Secretion and Attenuates Virulence. Antimicrobial Agents and Chemotherapy, 2015, 59, 4436-4445.	3.2	99
8	To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis?. Current Opinion in Microbiology, 2010, 13, 86-92.	5.1	93
9	Correlation of Phenotypic Profiles Using Targeted Proteomics Identifies Mycobacterial Esx-1 Substrates. Journal of Proteome Research, 2014, 13, 5151-5164.	3.7	55
10	Coupling Capillary Zone Electrophoresis with Electron Transfer Dissociation and Activated Ion Electron Transfer Dissociation for Top-Down Proteomics. Analytical Chemistry, 2015, 87, 5422-5429.	6.5	51
11	A Novel ESX-1 Locus Reveals that Surface-Associated ESX-1 Substrates Mediate Virulence in Mycobacterium marinum. Journal of Bacteriology, 2014, 196, 1877-1888.	2.2	42
12	Conserved Mechanisms of Mycobacterium marinum Pathogenesis within the Environmental Amoeba Acanthamoeba castellanii. Applied and Environmental Microbiology, 2012, 78, 2049-2052.	3.1	41
13	WhiB6 regulation of ESX-1 gene expression is controlled by a negative feedback loop in <i>Mycobacterium marinum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10772-E10781.	7.1	39
14	Direct Detection of Bacterial Protein Secretion Using Whole Colony Proteomics. Molecular and Cellular Proteomics, 2012, 11, 596-604.	3.8	37
15	P Pilus Assembly Motif Necessary for Activation of the CpxRA Pathway by PapE in Escherichia coli. Journal of Bacteriology, 2004, 186, 4326-4337.	2.2	33
16	Esx Systems and the Mycobacterial Cell Envelope: What's the Connection?. Journal of Bacteriology, 2017, 199, .	2.2	31
17	Homeostasis of N-α-Terminal Acetylation of EsxA Correlates with Virulence in Mycobacterium marinum. Infection and Immunity, 2014, 82, 4572-4586.	2.2	29
18	A New ESX-1 Substrate in Mycobacterium marinum That Is Required for Hemolysis but Not Host Cell Lysis. Journal of Bacteriology, 2019, 201, .	2.2	27

PATRICIA A DIGIUSEPPE

#	Article	IF	CITATIONS
19	Proteo-genetic analysis reveals clear hierarchy of ESX-1 secretion in <i>Mycobacterium marinum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	23
20	EspM ls a Conserved Transcription Factor That Regulates Gene Expression in Response to the ESX-1 System. MBio, 2020, 11, .	4.1	21
21	A Nonsense Mutation in Mycobacterium marinum That Is Suppressible by a Novel Mechanism. Infection and Immunity, 2017, 85, .	2.2	20
22	Modeling Tubercular ESX-1 Secretion Using Mycobacterium marinum. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	19
23	Esx Paralogs Are Functionally Equivalent to ESX-1 Proteins but Are Dispensable for Virulence in Mycobacterium marinum. Journal of Bacteriology, 2018, 200, .	2.2	18
24	Quantitative N-Terminal Footprinting of Pathogenic Mycobacteria Reveals Differential Protein Acetylation. Journal of Proteome Research, 2018, 17, 3246-3258.	3.7	18
25	Conserved ESX-1 Substrates EspE and EspF Are Virulence Factors That Regulate Gene Expression. Infection and Immunity, 2020, 88, .	2.2	16
26	Disconnecting In Vitro ESX-1 Secretion from Mycobacterial Virulence. Journal of Bacteriology, 2013, 195, 5418-5420.	2.2	14
27	Editorial: Cellular and Molecular Mechanisms of Mycobacterium tuberculosis Virulence. Frontiers in Cellular and Infection Microbiology, 2019, 9, 331.	3.9	11
28	Bacterial secretion systems: Networks of pathogenic regulation and adaptation in mycobacteria and beyond. PLoS Pathogens, 2022, 18, e1010610.	4.7	7
29	Rational engineering of a virulence gene from Mycobacterium tuberculosis facilitates proteomic analysis of a natural protein N-terminus. Scientific Reports, 2016, 6, 33265.	3.3	6
30	The genetic proteome: Using genetics to inform the proteome of mycobacterial pathogens. PLoS Pathogens, 2021, 17, e1009124.	4.7	4
31	24th Annual Midwest Microbial Pathogenesis Conference. Journal of Bacteriology, 2018, 200, e000950-18.	2.2	0