
Guy B Marin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5617907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena, 2004, 135, 167-175.	0.8	1,420
2	New Trends in Olefin Production. Engineering, 2017, 3, 171-178.	3.2	512
3	Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: RoleÂofÂFe. ACS Catalysis, 2015, 5, 3028-3039.	5.5	383
4	Super-dry reforming of methane intensifies CO ₂ utilization via Le Chatelier's principle. Science, 2016, 354, 449-452.	6.0	348
5	Comprehensive reaction mechanism for n-butanol pyrolysis and combustion. Combustion and Flame, 2011, 158, 16-41.	2.8	240
6	Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker. Computers and Chemical Engineering, 2009, 33, 122-132.	2.0	224
7	Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production. Applied Catalysis B: Environmental, 2006, 67, 136-148.	10.8	217
8	Kinetics of heterogeneously MgO-catalyzed transesterification. Applied Catalysis B: Environmental, 2006, 62, 35-45.	10.8	190
9	Adsorption of C2â^'C8 <i>n</i> -Alkanes in Zeolites. Journal of Physical Chemistry C, 2011, 115, 1204-1219.	1.5	187
10	The strength of multi-scale modeling to unveil the complexity of radical polymerization. Progress in Polymer Science, 2016, 58, 59-89.	11.8	174
11	The Chemical Route to a Carbon Dioxide Neutral World. ChemSusChem, 2017, 10, 1039-1055.	3.6	174
12	Carbon gasification from Fe–Ni catalysts after methane dry reforming. Applied Catalysis B: Environmental, 2016, 185, 42-55.	10.8	173
13	Ab Initio Calculations for Hydrocarbons:Â Enthalpy of Formation, Transition State Geometry, and Activation Energy for Radical Reactions. Journal of Physical Chemistry A, 2003, 107, 9147-9159.	1.1	170
14	Density Functional Study of Benzene Adsorption on Pt(111). Journal of Physical Chemistry B, 2002, 106, 7489-7498.	1.2	166
15	Zeolite Shape-Selectivity in thegem-Methylation of Aromatic Hydrocarbons. Angewandte Chemie - International Edition, 2007, 46, 1311-1314.	7.2	154
16	First Principle Kinetic Studies of Zeolite-Catalyzed Methylation Reactions. Journal of the American Chemical Society, 2011, 133, 888-899.	6.6	153
17	CeO ₂ -Modified Fe ₂ O ₃ for CO ₂ Utilization via Chemical Looping. Industrial & Engineering Chemistry Research, 2013, 52, 8416-8426.	1.8	149
18	Microkinetics of methane oxidative coupling. Catalysis Today, 2008, 137, 90-102.	2.2	145

#	Article	IF	CITATIONS
19	Linear Gradient Quality of ATRP Copolymers. Macromolecules, 2012, 45, 8519-8531.	2.2	139
20	Theoretical Study of the Thermodynamics and Kinetics of Hydrogen Abstractions from Hydrocarbons. Journal of Physical Chemistry A, 2007, 111, 11771-11786.	1.1	134
21	Theoretical Insights on Methylbenzene Sideâ€Chain Growth in ZSMâ€5 Zeolites for Methanolâ€ŧoâ€Olefin Conversion. Chemistry - A European Journal, 2009, 15, 10803-10808.	1.7	131
22	Eurokin. Chemical Reaction Kinetics in Practice. Cattech, 2001, 5, 36-60.	2.6	127
23	Group Additive Values for the Gas Phase Standard Enthalpy of Formation of Hydrocarbons and Hydrocarbon Radicals. Journal of Physical Chemistry A, 2005, 109, 7466-7480.	1.1	127
24	Acidâ^'Metal Balance of a Hydrocracking Catalyst:Â Ideal versus Nonideal Behavior. Industrial & Engineering Chemistry Research, 2005, 44, 5159-5169.	1.8	125
25	An XPS study on the surface reduction of V2O5(001) induced by Ar+ ion bombardment. Surface Science, 2006, 600, 3512-3517.	0.8	124
26	The Crucial Role of Diffusional Limitations in Controlled Radical Polymerization. Macromolecular Reaction Engineering, 2013, 7, 362-379.	0.9	122
27	Automatic reaction network generation using RMG for steam cracking of n-hexane. AICHE Journal, 2006, 52, 718-730.	1.8	119
28	Genesys: Kinetic model construction using chemo-informatics. Chemical Engineering Journal, 2012, 207-208, 526-538.	6.6	116
29	Catalyst-assisted chemical looping for CO2 conversion to CO. Applied Catalysis B: Environmental, 2015, 164, 184-191.	10.8	110
30	Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using ¹³ C NMR and Comprehensive GC × GC. ACS Sustainable Chemistry and Engineering, 2016, 4, 4974-4985.	3.2	109
31	Physisorption and chemisorption of alkanes and alkenes in H-FAU: a combined ab initio–statistical thermodynamics study. Physical Chemistry Chemical Physics, 2009, 11, 2939.	1.3	104
32	Development of a transient kinetic model for the CO oxidation by O2 over a Pt/Rh/CeO2/γ-Al2O3 three-way catalyst. Applied Catalysis B: Environmental, 1998, 19, 245-259.	10.8	103
33	Making chemicals with electricity. Science, 2019, 364, 734-735.	6.0	102
34	The coordinatively saturated vanadium MIL-47 as a low leaching heterogeneous catalyst in the oxidation of cyclohexene. Journal of Catalysis, 2012, 285, 196-207.	3.1	100
35	Delivering a Modifying Element to Metal Nanoparticles via Support: Pt–Ga Alloying during the Reduction of Pt/Mg(Al,Ga)O _{<i>x</i>} Catalysts and Its Effects on Propane Dehydrogenation. ACS Catalysis, 2014, 4, 1812-1824.	5.5	100
36	Dynamic methods for catalytic kinetics. Applied Catalysis A: General, 2008, 342, 3-28.	2.2	99

#	Article	IF	CITATIONS
37	Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC×GC – FID/SCD/NCD/TOF-MS. Fuel, 2015, 140, 398-406.	3.4	99
38	The Rise and Fall of Direct Mechanisms in Methanol-to-Olefin Catalysis:Â An Overview of Theoretical Contributions. Industrial & Engineering Chemistry Research, 2007, 46, 8832-8838.	1.8	95
39	The Positive Role of Hydrogen on the Dehydrogenation of Propane on Pt(111). ACS Catalysis, 2017, 7, 7495-7508.	5.5	95
40	Normal Mode Analysis in Zeolites: Toward an Efficient Calculation of Adsorption Entropies. Journal of Chemical Theory and Computation, 2011, 7, 1090-1101.	2.3	94
41	Automatic Mechanism and Kinetic Model Generation for Gas―and Solutionâ€Phase Processes: A Perspective on Best Practices, Recent Advances, and Future Challenges. International Journal of Chemical Kinetics, 2015, 47, 199-231.	1.0	94
42	Model-based design of the polymer microstructure: bridging the gap between polymer chemistry and engineering. Polymer Chemistry, 2015, 6, 7081-7096.	1.9	94
43	On-line analysis of complex hydrocarbon mixtures using comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2010, 1217, 6623-6633.	1.8	90
44	ARGET ATRP of Butyl Methacrylate: Utilizing Kinetic Modeling To Understand Experimental Trends. Macromolecules, 2013, 46, 3828-3840.	2.2	90
45	Low-Temperature Atomic Layer Deposition of Platinum Using (Methylcyclopentadienyl)trimethylplatinum and Ozone. Journal of Physical Chemistry C, 2013, 117, 20557-20561.	1.5	90
46	Controlling the stability of a Fe–Ni reforming catalyst: Structural organization of the active components. Applied Catalysis B: Environmental, 2017, 209, 405-416.	10.8	89
47	Ab initio group contribution method for activation energies for radical additions. AICHE Journal, 2004, 50, 426-444.	1.8	88
48	Ethanol to higher hydrocarbons over Ni, Ga, Fe-modified ZSM-5: Effect of metal content. Applied Catalysis A: General, 2015, 492, 117-126.	2.2	88
49	Upgrading the value of anaerobic digestion <i>via</i> chemical production from grid injected biomethane. Energy and Environmental Science, 2018, 11, 1788-1802.	15.6	88
50	Carbonâ€Centered Radical Addition and βâ€Scission Reactions: Modeling of Activation Energies and Preâ€exponential Factors. ChemPhysChem, 2008, 9, 124-140.	1.0	87
51	First Principles Based Group Additive Values for the Gas Phase Standard Entropy and Heat Capacity of Hydrocarbons and Hydrocarbon Radicals. Journal of Physical Chemistry A, 2008, 112, 12235-12251.	1.1	86
52	Methodology for Kinetic Modeling of Atom Transfer Radical Polymerization. Macromolecular Reaction Engineering, 2009, 3, 185-209.	0.9	85
53	Modeling fast biomass pyrolysis in a gas–solid vortex reactor. Chemical Engineering Journal, 2012, 207-208, 195-208.	6.6	85
54	Advanced Chemical Looping Materials for CO2 Utilization: A Review. Materials, 2018, 11, 1187.	1.3	85

#	Article	IF	CITATIONS
55	Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices. Computers and Chemical Engineering, 2007, 31, 1020-1034.	2.0	84
56	Origin of the Difference between Branching in Acrylates Polymerization under Controlled and Free Radical Conditions: A Computational Study of Competitive Processes. Macromolecules, 2011, 44, 8361-8373.	2.2	84
57	Reaction network for the total oxidation of toluene over CuO–CeO2/Al2O3. Journal of Catalysis, 2011, 283, 1-9.	3.1	84
58	Catalyst design based on microkinetic models: Oxidative coupling of methane. Catalysis Today, 2011, 159, 29-36.	2.2	84
59	Kinetic Modeling of ICAR ATRP. Macromolecular Theory and Simulations, 2012, 21, 52-69.	0.6	84
60	The thermal decomposition of 2,5-dimethylfuran. Proceedings of the Combustion Institute, 2013, 34, 251-258.	2.4	80
61	Influence of Dimethyl Disulfide on Coke Formation during Steam Cracking of Hydrocarbons. Industrial & Engineering Chemistry Research, 2007, 46, 4134-4148.	1.8	78
62	Nature of the active sites for the total oxidation of toluene by CuOCeO2/Al2O3. Journal of Catalysis, 2012, 295, 91-103.	3.1	78
63	Kinetic Modeling of Radical Thiol–Ene Chemistry for Macromolecular Design: Importance of Side Reactions and Diffusional Limitations. Macromolecules, 2013, 46, 1732-1742.	2.2	78
64	Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane. Combustion and Flame, 2018, 190, 270-283.	2.8	78
65	Formation of ZSMâ€⊋2 Zeolite Catalytic Particles by Fusion of Elementary Nanorods. Chemistry - A European Journal, 2007, 13, 10070-10077.	1.7	77
66	Anharmonicity and Confinement in Zeolites: Structure, Spectroscopy, and Adsorption Free Energy of Ethanol in H-ZSM-5. Journal of Physical Chemistry C, 2016, 120, 7172-7182.	1.5	77
67	The role of CO2 in the dehydrogenation of propane over WO –VO /SiO2. Journal of Catalysis, 2016, 335, 1-10.	3.1	77
68	Tracer Chromatographic Study of Pore and Pore Mouth Adsorption of Linear and Monobranched Alkanes on ZSM-22 Zeolite. Journal of Physical Chemistry B, 2003, 107, 398-406.	1.2	76
69	An experimental and kinetic modeling study of cyclopentadiene pyrolysis: First growth of polycyclic aromatic hydrocarbons. Combustion and Flame, 2014, 161, 2739-2751.	2.8	75
70	Biomass to olefins: Cracking of renewable naphtha. Chemical Engineering Journal, 2011, 176-177, 178-187.	6.6	74
71	Single-Event Microkinetics for Methanol to Olefins on H-ZSM-5. Industrial & Engineering Chemistry Research, 2013, 52, 1491-1507.	1.8	73
72	Density Functional Theory Analysis of Benzene (De)hydrogenation on Pt(111):Â Addition and Removal of the First Two H-Atoms. Journal of Physical Chemistry B, 2003, 107, 3844-3855.	1.2	71

5

#	Article	IF	CITATIONS
73	Accurate High-Temperature Reaction Networks for Alternative Fuels: Butanol Isomers. Industrial & Engineering Chemistry Research, 2010, 49, 10399-10420.	1.8	71
74	Reaction path analysis of propane selective oxidation over V2O5 and V2O5/TiO2. Journal of Catalysis, 2012, 289, 127-139.	3.1	71
75	Detailed compositional characterization of plastic waste pyrolysis oil by comprehensive two-dimensional gas-chromatography coupled to multiple detectors. Journal of Chromatography A, 2014, 1359, 237-246.	1.8	70
76	Mg–Fe–Al–O for advanced CO ₂ to CO conversion: carbon monoxide yield vs. oxygen storage capacity. Journal of Materials Chemistry A, 2015, 3, 16251-16262.	5.2	70
77	First principleâ€based simulation of ethane steam cracking. AICHE Journal, 2011, 57, 482-496.	1.8	69
78	DFT-based microkinetic modeling of ethanol dehydration in H-ZSM-5. Journal of Catalysis, 2016, 339, 173-185.	3.1	69
79	Theoretical study of the adsorption of C1–C4 primary alcohols in H-ZSM-5. Physical Chemistry Chemical Physics, 2010, 12, 9481.	1.3	68
80	The effect of bismuth on the selective oxidation of lactose on supported palladium catalysts. Carbohydrate Research, 1990, 204, 121-129.	1.1	67
81	Ab Initio Thermochemistry and Kinetics for Carbon-Centered Radical Addition and β-Scission Reactions. Journal of Physical Chemistry A, 2007, 111, 8416-8428.	1.1	67
82	Kinetic modeling of the total oxidation of propane over CuO-CeO2/γ-Al2O3. Applied Catalysis B: Environmental, 2010, 95, 26-38.	10.8	67
83	Improved Livingness and Control over Branching in RAFT Polymerization of Acrylates: Could Microflow Synthesis Make the Difference?. Macromolecular Rapid Communications, 2015, 36, 2149-2155.	2.0	67
84	Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering. Current Opinion in Chemical Engineering, 2019, 26, 81-87.	3.8	67
85	Ab Initio Group Contribution Method for Activation Energies of Hydrogen Abstraction Reactions. ChemPhysChem, 2006, 7, 188-199.	1.0	66
86	Physisorption and Chemisorption of Linear Alkenes in Zeolites: A Combined QM-Pot(MP2//B3LYP:GULP)–Statistical Thermodynamics Study. Journal of Physical Chemistry C, 2011, 115, 23831-23847.	1.5	66
87	Fe-Containing Magnesium Aluminate Support for Stability and Carbon Control during Methane Reforming. ACS Catalysis, 2018, 8, 5983-5995.	5.5	66
88	The Influence of Dimethyl Disulfide on Naphtha Steam Cracking. Industrial & Engineering Chemistry Research, 2001, 40, 4353-4362.	1.8	65
89	Effect of Clustering on Gasâ^'Solid Drag in Dilute Two-Phase Flow. Industrial & Engineering Chemistry Research, 2004, 43, 4635-4646.	1.8	65
90	Reaction path analysis for 1-butanol dehydration in H-ZSM-5 zeolite: Ab initio and microkinetic modeling. Journal of Catalysis, 2015, 330, 28-45.	3.1	65

#	Article	IF	CITATIONS
91	Fed-Batch Control and Visualization of Monomer Sequences of Individual ICAR ATRP Gradient Copolymer Chains. Polymers, 2014, 6, 1074-1095.	2.0	64
92	The total oxidation of propane over supported Cu and Ce oxides: A comparison of single and binary metal oxides. Journal of Catalysis, 2010, 272, 109-120.	3.1	63
93	Kinetics of the oxidative coupling of methane at atmospheric pressure in the absence of catalyst. Industrial & Engineering Chemistry Research, 1991, 30, 2088-2097.	1.8	62
94	Rapeseed oil methyl ester pyrolysis: On-line product analysis using comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2011, 1218, 3217-3223.	1.8	62
95	MAMA-SC1 initiated nitroxide mediated polymerization of styrene: From Arrhenius parameters to model-based design. Chemical Engineering Journal, 2015, 278, 407-420.	6.6	62
96	Kinetics of a Gas-Phase Chain Reaction Catalyzed by a Solid:Â The Oxidative Coupling of Methane over Li/MgO-Based Catalysts. Industrial & Engineering Chemistry Research, 1996, 35, 3999-4011.	1.8	61
97	Hydrogenation kinetics of toluene on Pt/ZSM-22. Chemical Engineering Journal, 2002, 90, 117-129.	6.6	61
98	Alkylcarbenium Ion Concentrations in Zeolite Pores During Octane Hydrocracking on Pt/H-USY Zeolite. Catalysis Letters, 2004, 94, 81-88.	1.4	61
99	A systematic methodology for kinetic modeling of chemical reactions applied to <i>n</i> â€hexane hydroisomerization. AICHE Journal, 2015, 61, 880-892.	1.8	61
100	Single-Event Rate Parameters for the Hydrocracking of Cycloalkanes on Pt/US-Y Zeolites. Industrial & Engineering Chemistry Research, 2001, 40, 1832-1844.	1.8	60
101	Group Additive Values for the Gasâ€Phase Standard Enthalpy of Formation, Entropy and Heat Capacity of Oxygenates. Chemistry - A European Journal, 2013, 19, 16431-16452.	1.7	60
102	Catalytic Fast Pyrolysis of Pine Wood: Effect of Successive Catalyst Regeneration. Energy & Fuels, 2014, 28, 4560-4572.	2.5	60
103	CO2 conversion to CO by auto-thermal catalyst-assisted chemical looping. Journal of CO2 Utilization, 2016, 16, 8-16.	3.3	60
104	Methane aromatisation based upon elementary steps: Kinetic and catalyst descriptors. Microporous and Mesoporous Materials, 2012, 164, 302-312.	2.2	59
105	Spatial arrangement and acid strength effects on acid–base cooperatively catalyzed aldol condensation on aminosilica materials. Journal of Catalysis, 2015, 325, 19-25.	3.1	59
106	Coke Formation in the Transfer Line Exchanger during Steam Cracking of Hydrocarbons. Industrial & Engineering Chemistry Research, 2009, 48, 10343-10358.	1.8	58
107	Influence of the Reactor Material Composition on Coke Formation during Ethane Steam Cracking. Industrial & Engineering Chemistry Research, 2014, 53, 6358-6371.	1.8	58
108	Pressure dependent kinetic analysis of pathways to naphthalene from cyclopentadienyl recombination. Combustion and Flame, 2018, 187, 247-256.	2.8	58

#	Article	IF	CITATIONS
109	A multi-layered view of chemical and biochemical engineering. Chemical Engineering Research and Design, 2020, 155, A133-A145.	2.7	58
110	The conversion of methanol to olefins: a transient kinetic study. Chemical Engineering Science, 1999, 54, 4385-4395.	1.9	57
111	Theoretical Study of the Thermal Decomposition of Dimethyl Disulfide. Journal of Physical Chemistry A, 2010, 114, 10531-10549.	1.1	57
112	The Long and the Short of Radical Polymerization. Macromolecules, 2015, 48, 492-501.	2.2	57
113	Deactivation Study of Fe ₂ O ₃ –CeO ₂ during Redox Cycles for CO Production from CO ₂ . Industrial & Engineering Chemistry Research, 2016, 55, 5911-5922.	1.8	56
114	State-of-the-art of Coke Formation during Steam Cracking: Anti-Coking Surface Technologies. Industrial & Engineering Chemistry Research, 2018, 57, 16117-16136.	1.8	56
115	Three-dimensional flow patterns in cracking furnaces with long-flame burners. AICHE Journal, 2001, 47, 388-400.	1.8	55
116	Physisorption and Chemisorption of Hydrocarbons in H-FAU Using QM-Pot(MP2//B3LYP) Calculations. Journal of Physical Chemistry C, 2008, 112, 11796-11812.	1.5	55
117	Kinetic Monte Carlo Modeling of the Sulfinyl Precursor Route for Poly(<i>p</i> -phenylene vinylene) Synthesis. Macromolecules, 2011, 44, 8716-8726.	2.2	55
118	An Experimental and Kinetic Modeling Study of Pyrolysis and Combustion of Acetone–Butanol–Ethanol (ABE) Mixtures. Combustion Science and Technology, 2012, 184, 942-955.	1.2	55
119	Pt/H-ZSM-22 hydroisomerization catalysts optimization guided by Single-Event MicroKinetic modeling. Journal of Catalysis, 2012, 290, 165-176.	3.1	55
120	Sustainable innovations in steam cracking: CO ₂ neutral olefin production. Reaction Chemistry and Engineering, 2020, 5, 239-257.	1.9	55
121	Kinetic Monte Carlo Modeling Extracts Information on Chain Initiation and Termination from Complete PLP-SEC Traces. Macromolecules, 2017, 50, 1371-1385.	2.2	54
122	An Update on the Pivotal Role of Kinetic Modeling for the Mechanistic Understanding and Design of Bulk and Solution RAFT Polymerization. Macromolecular Theory and Simulations, 2017, 26, 1600048.	0.6	54
123	Artificial Intelligence in Steam Cracking Modeling: A Deep Learning Algorithm for Detailed Effluent Prediction. Engineering, 2019, 5, 1027-1040.	3.2	54
124	Three-Dimensional Simulation of a Fluid Catalytic Cracking Riser Reactor. Industrial & Engineering Chemistry Research, 2003, 42, 2602-2617.	1.8	53
125	Design and cold flow testing of a Gas-Solid Vortex Reactor demonstration unit for biomass fast pyrolysis. Chemical Engineering Journal, 2017, 329, 198-210.	6.6	53
126	The role of mass and heat transfer in the design of novel reactors for oxidative coupling of methane. Chemical Engineering Science, 2019, 198, 268-289.	1.9	53

#	Article	IF	CITATIONS
127	Single-Event Microkinetic Model for Fischerâ~Tropsch Synthesis on Iron-Based Catalysts. Industrial & Engineering Chemistry Research, 2008, 47, 5879-5891.	1.8	52
128	Insights into the Reaction Mechanism of Ethanol Conversion into Hydrocarbons on Hâ€ZSMâ€5. Angewandte Chemie - International Edition, 2016, 55, 12817-12821.	7.2	52
129	A comprehensive kinetic model for Cu catalyzed liquid phase glycerol hydrogenolysis. Applied Catalysis B: Environmental, 2017, 205, 469-480.	10.8	52
130	Rotating fluidized bed with a static geometry: Guidelines for design and operating conditions. Chemical Engineering Science, 2010, 65, 1678-1693.	1.9	51
131	Modeling the influence of resonance stabilization on the kinetics of hydrogen abstractions. Physical Chemistry Chemical Physics, 2010, 12, 1278-1298.	1.3	51
132	Model-Based Design To Push the Boundaries of Sequence Control. Macromolecules, 2016, 49, 9336-9344.	2.2	51
133	Irreducible Mass-Transport Limitations during a Heterogeneously Catalyzed Gas-Phase Chain Reaction:Â Oxidative Coupling of Methane. Industrial & Engineering Chemistry Research, 1996, 35, 415-421.	1.8	50
134	TiO2 films prepared by DC magnetron sputtering from ceramic targets. Vacuum, 2002, 68, 31-38.	1.6	50
135	Hydrogen Radical Additions to Unsaturated Hydrocarbons and the Reverse β‧cission Reactions: Modeling of Activation Energies and Preâ€Exponential Factors. ChemPhysChem, 2010, 11, 195-210.	1.0	50
136	Molecular reconstruction of complex hydrocarbon mixtures: An application of principal component analysis. AICHE Journal, 2010, 56, 3174-3188.	1.8	50
137	Influence of Silicon and Silicon/Sulfur-Containing Additives on Coke Formation during Steam Cracking of Hydrocarbons. Industrial & Engineering Chemistry Research, 2008, 47, 1468-1482.	1.8	49
138	Atom Transfer Radical Polymerization of Isobornyl Acrylate: A Kinetic Modeling Study. Macromolecules, 2010, 43, 8766-8781.	2.2	49
139	Kinetic Modeling as a Tool to Understand and Improve the Nitroxide Mediated Polymerization of Styrene. Macromolecular Theory and Simulations, 2011, 20, 238-265.	0.6	49
140	Computational fluid dynamicsâ€based design of finned steam cracking reactors. AICHE Journal, 2014, 60, 794-808.	1.8	48
141	Silanolâ€Assisted Aldol Condensation on Aminated Silica: Understanding the Arrangement of Functional Groups. ChemCatChem, 2014, 6, 255-264.	1.8	48
142	Experimental and Modeling Study on the Thermal Decomposition of Jet Propellant-10. Energy & Fuels, 2014, 28, 4976-4985.	2.5	48
143	Swirl flow tube reactor technology: An experimental and computational fluid dynamics study. Chemical Engineering Journal, 2014, 238, 56-65.	6.6	48
144	CFD-based design of 3D pyrolysis reactors: RANS vs. LES. Chemical Engineering Journal, 2015, 282, 66-76.	6.6	48

#	Article	IF	CITATIONS
145	Catalyst-assisted chemical looping auto-thermal dry reforming: Spatial structuring effects on process efficiency. Applied Catalysis B: Environmental, 2018, 231, 123-136.	10.8	48
146	Estimation of intrinsic rate coefficients in vinyl chloride suspension polymerization. Polymer, 2005, 46, 8340-8354.	1.8	47
147	Dimensional analysis for scaling up and down steam cracking coils. Chemical Engineering Journal, 2007, 134, 3-10.	6.6	47
148	Effects of amine structure and base strength on acid–base cooperative aldol condensation. Catalysis Today, 2015, 246, 35-45.	2.2	47
149	Oxidative Coupling of Methane: A Microkinetic Model Accounting for Intraparticle Surface-Intermediates Concentration Profiles. Industrial & Engineering Chemistry Research, 2014, 53, 1825-1840.	1.8	46
150	Kinetic Modeling of Jet Propellant-10 Pyrolysis. Energy & amp; Fuels, 2015, 29, 413-427.	2.5	46
151	Hydrocarbon Bond Dissociation Enthalpies: From Substituted Aromatics to Large Polyaromatics. ChemPhysChem, 2006, 7, 2205-2214.	1.0	45
152	Theoretical Study of the Adsorption of the Butanol Isomers in H-ZSM-5. Journal of Physical Chemistry C, 2011, 115, 8658-8669.	1.5	45
153	Catalytic Coating for Reduced Coke Formation in Steam Cracking Reactors. Industrial & Engineering Chemistry Research, 2015, 54, 9525-9535.	1.8	45
154	Hydrogen and Carbon Monoxide Production by Chemical Looping over Ironâ€Aluminium Oxides. Energy Technology, 2016, 4, 304-313.	1.8	45
155	Kinetic Monte Carlo Generation of Complete Electron Spray Ionization Mass Spectra for Acrylate Macromonomer Synthesis. Macromolecules, 2017, 50, 2625-2636.	2.2	45
156	Modeling the Gasâ€Phase Thermochemistry of Organosulfur Compounds. Chemistry - A European Journal, 2011, 17, 7656-7673.	1.7	44
157	Isobutene Protonation in H-FAU, H-MOR, H-ZSM-5, and H-ZSM-22. Journal of Physical Chemistry C, 2012, 116, 18236-18249.	1.5	44
158	First-Principles Kinetic Study on the Effect of the Zeolite Framework on 1-Butanol Dehydration. ACS Catalysis, 2016, 6, 4081-4094.	5.5	44
159	Atomic Layer Deposition Route To Tailor Nanoalloys of Noble and Non-noble Metals. ACS Nano, 2016, 10, 8770-8777.	7.3	44
160	Particle by Particle Kinetic Monte Carlo Tracking of Reaction and Mass Transfer Events in Miniemulsion Free Radical Polymerization. Macromolecules, 2019, 52, 1408-1423.	2.2	44
161	The effects of abrupt T-outlets in a riser: 3D simulation using the kinetic theory of granular flow. Chemical Engineering Science, 2003, 58, 877-885.	1.9	43
162	Modeling the reaction event history and microstructure of individual macrospecies in postpolymerization modification. AICHE Journal, 2017, 63, 4944-4961.	1.8	43

#	Article	IF	CITATIONS
163	Skeletal isomerization of octadecane on bifunctional ZSM-23 zeolite catalyst. Catalysis Letters, 2005, 100, 235-242.	1.4	42
164	A Theoretical Exploration of the Potential of ICAR ATRP for One―and Twoâ€Pot Synthesis of Wellâ€Defined Diblock Copolymers. Macromolecular Reaction Engineering, 2013, 7, 311-326.	0.9	42
165	Effect of Rh in Ni-based catalysts on sulfur impurities during methane reforming. Applied Catalysis B: Environmental, 2020, 267, 118691.	10.8	42
166	Two Severity Indices for Scale-Up of Steam Cracking Coils. Industrial & Engineering Chemistry Research, 2005, 44, 3402-3411.	1.8	41
167	Thermochemistry and Kinetics of Hydrogen Abstraction by Methyl Radical from Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry A, 2006, 110, 13624-13631.	1.1	41
168	In-situ XAS study on the Cu and Ce local structural changes in a CuO–CeO2/Al2O3 catalyst under propane reduction and re-oxidation. Journal of Physics and Chemistry of Solids, 2009, 70, 1274-1284.	1.9	41
169	Theoretical Study of the Effect of (001) TiO ₂ Anatase Support on V ₂ O ₅ . Journal of Physical Chemistry C, 2010, 114, 3115-3130.	1.5	41
170	4-Dimensional Modeling Strategy for an Improved Understanding of Miniemulsion NMP of Acrylates Initiated by SG1-Macroinitiator. Macromolecules, 2014, 47, 7732-7741.	2.2	41
171	Combined chemical looping for energy storage and conversion. Journal of Power Sources, 2015, 286, 362-370.	4.0	41
172	A complete understanding of the reaction kinetics for the industrial production process of expandable polystyrene. AICHE Journal, 2017, 63, 2043-2059.	1.8	41
173	A core-shell structured Fe 2 O 3 /ZrO 2 @ZrO 2 nanomaterial with enhanced redox activity and stability for CO 2 conversion. Journal of CO2 Utilization, 2017, 17, 20-31.	3.3	41
174	Reactivity Indices for Radical Reactions Involving Polyaromatics. Journal of Physical Chemistry A, 2004, 108, 7281-7290.	1.1	40
175	Equilibrium relationships for non-equilibrium chemical dependencies. Chemical Engineering Science, 2011, 66, 111-114.	1.9	40
176	Computerâ€Aided Optimization of Conditions for Fast and Controlled ICAR ATRP of <i>n</i> â€Butyl Acrylate. Macromolecular Theory and Simulations, 2013, 22, 136-149.	0.6	40
177	TAP study of toluene total oxidation over a Co ₃ O ₄ /La-CeO ₂ catalyst with an application as a washcoat of cordierite honeycomb monoliths. Physical Chemistry Chemical Physics, 2014, 16, 11447-11455.	1.3	40
178	Quantitative analysis of nitrogen containing compounds in microalgae based bio-oils using comprehensive two-dimensional gas-chromatography coupled to nitrogen chemiluminescence detector and time of flight mass spectrometer. Journal of Chromatography A, 2016, 1460, 135-146.	1.8	40
179	Selective Oxidation of Methyl α-d-Glucopyranoside with Oxygen over Supported Platinum: Kinetic Modeling in the Presence of Deactivation by Overoxidation of the Catalyst. Industrial & Engineering Chemistry Research, 1997, 36, 3541-3553.	1.8	39
180	Single-Event MicroKinetics for coke formation in catalytic cracking. Catalysis Today, 2005, 107-108, 619-629.	2.2	39

#	Article	IF	CITATIONS
181	Mechanism of carbon deposits removal from supported Ni catalysts. Applied Catalysis B: Environmental, 2018, 239, 502-512.	10.8	39
182	<i>110th Anniversary</i> : Carbon Dioxide and Chemical Looping: Current Research Trends. Industrial & Engineering Chemistry Research, 2019, 58, 16235-16257.	1.8	39
183	Effects of acid properties of Y zeolites on the liquid-phase alkylation of benzene with 1-octene: A reaction path analysis. Journal of Molecular Catalysis A, 2007, 277, 1-14.	4.8	38
184	From <i>n</i> -butyl acrylate Arrhenius parameters for backbiting and tertiary propagation to β-scission <i>via</i> stepwise pulsed laser polymerization. Polymer Chemistry, 2019, 10, 4116-4125.	1.9	38
185	Approaches for Selective Oxidation of Methane to Methanol. Catalysts, 2020, 10, 194.	1.6	38
186	A Fundamental Kinetic Model for the Catalytic Cracking of Alkanes on a USY Zeolite in the Presence of Coke Formation. Industrial & Engineering Chemistry Research, 2001, 40, 1337-1347.	1.8	37
187	Three-Dimensional Asymmetric Flow and Temperature Fields in Cracking Furnacesâ€. Industrial & Engineering Chemistry Research, 2001, 40, 5087-5094.	1.8	37
188	A comprehensive study of methyl decanoate pyrolysis. Energy, 2012, 43, 146-160.	4.5	37
189	Combined Comprehensive Two-Dimensional Gas Chromatography Analysis of Polyaromatic Hydrocarbons/Polyaromatic Sulfur-Containing Hydrocarbons (PAH/PASH) in Complex Matrices. Industrial & Engineering Chemistry Research, 2014, 53, 15436-15446.	1.8	37
190	Information-Driven Catalyst Design Based on High-Throughput Intrinsic Kinetics. Catalysts, 2015, 5, 1948-1968.	1.6	37
191	Measuring biomass fast pyrolysis kinetics: State of the art. Wiley Interdisciplinary Reviews: Energy and Environment, 2019, 8, e326.	1.9	37
192	Investigation of simultaneous adsorption of SO2 and NOx on Na-Î ³ -alumina with transient techniques. Catalysis Today, 2000, 62, 319-328.	2.2	36
193	Wood-derived olefins by steam cracking of hydrodeoxygenated tall oils. Bioresource Technology, 2012, 126, 48-55.	4.8	36
194	Coking Resistance of Specialized Coil Materials during Steam Cracking of Sulfur-Free Naphtha. Industrial & Engineering Chemistry Research, 2014, 53, 13644-13655.	1.8	36
195	In situ performance of various metal doped catalysts in micro-pyrolysis and continuous fast pyrolysis. Fuel Processing Technology, 2016, 144, 312-322.	3.7	36
196	Bifunctional Co- and Ni- ferrites for catalyst-assisted chemical looping with alcohols. Applied Catalysis B: Environmental, 2018, 222, 59-72.	10.8	36
197	Fe-Based Nano-Materials in Catalysis. Materials, 2018, 11, 831.	1.3	36
198	n- and Isoalkane Adsorption Mechanisms on Zeolite MCM-22. Journal of Physical Chemistry B, 2006, 110, 8551-8558.	1.2	35

#	Article	IF	CITATIONS
199	Naphthalene hydrogenation over a NiMo/γ-Al2O3 catalyst: Experimental study and kinetic modelling. Catalysis Today, 2008, 130, 231-242.	2.2	35
200	Importance of Radical Transfer in Precipitation Polymerization: The Case of Vinyl Chloride Suspension Polymerization. Macromolecular Reaction Engineering, 2009, 3, 16-35.	0.9	35
201	Experimental investigation of a gas–solid rotating bed reactor with static geometry. Chemical Engineering and Processing: Process Intensification, 2011, 50, 77-84.	1.8	35
202	Adsorption thermodynamics of C1–C4 alcohols in H-FAU, H-MOR, H-ZSM-5, and H-ZSM-22. Journal of Catalysis, 2015, 322, 91-103.	3.1	35
203	How penultimate monomer unit effects and initiator influence ICAR ATRP of <i>n</i> â€butyl acrylate and methyl methacrylate. AICHE Journal, 2017, 63, 4971-4986.	1.8	35
204	<i>Ab initio</i> based kinetic Monte Carlo analysis to unravel the propagation kinetics in vinyl acetate pulsed laser polymerization. Polymer Chemistry, 2017, 8, 7143-7150.	1.9	35
205	How chain length dependencies interfere with the bulk RAFT polymerization rate and microstructural control. Chemical Engineering Science, 2018, 177, 163-179.	1.9	35
206	Exploring 1,2-Hydrogen Shift in Silicon Nanoparticles: Reaction Kinetics from Quantum Chemical Calculations and Derivation of Transition State Group Additivity Database. Journal of Physical Chemistry A, 2009, 113, 10933-10946.	1.1	34
207	Coincidences in chemical kinetics: Surprising news about simple reactions. Chemical Engineering Science, 2010, 65, 6065-6076.	1.9	34
208	Hydrogen Production from Methane and Carbon Dioxide by Catalyst-Assisted Chemical Looping. Topics in Catalysis, 2011, 54, 907-913.	1.3	34
209	DFT-based modeling of benzene hydrogenation on Pt at industrially relevant coverage. Journal of Catalysis, 2015, 330, 406-422.	3.1	34
210	A Joined Theoreticalâ^'Experimental Investigation on the 1H and 13C NMR Signatures of Defects in Poly(vinyl chloride). Journal of Physical Chemistry B, 2008, 112, 14804-14818.	1.2	33
211	Kinetic correlations for H2 addition and elimination reaction mechanisms during silicon hydride pyrolysis. Physical Chemistry Chemical Physics, 2010, 12, 12676.	1.3	33
212	Production of bio-ethene and propene: alternatives for bulk chemicals and polymers. Green Chemistry, 2013, 15, 3064.	4.6	33
213	Assessment of a Gas–Solid Vortex Reactor for SO ₂ /NO _{<i>x</i>} Adsorption from Flue Gas. Industrial & Engineering Chemistry Research, 2013, 52, 861-875.	1.8	33
214	ICAR ATRP for Estimation of Intrinsic Macro-Activation/Deactivation Arrhenius Parameters under Polymerization Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 9674-9685.	1.8	33
215	In situ XAS and XRF study of nanoparticle nucleation during O3-based Pt deposition. Catalysis Today, 2014, 229, 2-13.	2.2	33
216	The Kinetics of Cyclization Reactions on Polyaromatics from First Principles. ChemPhysChem, 2002, 3, 863-870.	1.0	32

#	Article	IF	CITATIONS
217	Gas–solids mixing in the inlet zone of a dilute circulating fluidized bed. Powder Technology, 2005, 151, 96-116.	2.1	32
218	A theoretical study of the thermodynamics and kinetics of small organosulfur compounds. Theoretical Chemistry Accounts, 2009, 123, 391-412.	0.5	32
219	Design of Optimum Zeolite Pore System for Central Hydrocracking of Long-Chain n-Alkanes based on a Single-Event Microkinetic Model. Topics in Catalysis, 2009, 52, 1251-1260.	1.3	31
220	Kinetics of Substituted Silylene Addition and Elimination in Silicon Nanocluster Growth Captured by Group Additivity. ChemPhysChem, 2010, 11, 1978-1994.	1.0	31
221	TAP study on the active oxygen species in the total oxidation of propane over a CuO–CeO2/γ-Al2O3 catalyst. Catalysis Today, 2010, 157, 49-54.	2.2	31
222	Quantitative First-Principles Kinetic Modeling of the Aza-Michael Addition to Acrylates in Polar Aprotic Solvents. Journal of Organic Chemistry, 2016, 81, 12291-12302.	1.7	31
223	Formation and Functioning of Bimetallic Nanocatalysts: The Power of Xâ€ray Probes. Angewandte Chemie - International Edition, 2019, 58, 13220-13230.	7.2	31
224	Influence of the zeolite composition on the hydro-isomerisation and hydrocracking of alkanes on Pt/USY zeolites: modelling of the reaction kinetics using an adsorption–reaction approach. Applied Catalysis A: General, 2003, 246, 17-28.	2.2	30
225	The structure of supported and unsupported vanadium oxide under calcination, reduction and oxidation determined with XAS. Applied Catalysis A: General, 2005, 285, 151-162.	2.2	30
226	Kinetic modeling of the total oxidation of propane over anatase and vanadia sputter deposited catalysts. Applied Catalysis B: Environmental, 2009, 90, 295-306.	10.8	30
227	Solids velocity fields in a cold-flow Gas–Solid Vortex Reactor. Chemical Engineering Science, 2015, 123, 220-230.	1.9	30
228	Mechanistic insights into the formation of butene isomers from 1-butanol in H-ZSM-5: DFT based microkinetic modelling. Catalysis Science and Technology, 2017, 7, 1055-1072.	2.1	30
229	Decane hydroconversion on bifunctional Zeogrid and nano-zeolite assembled from aluminosilicate nanoslabs of MFI framework type. Applied Catalysis A: General, 2004, 257, 7-17.	2.2	29
230	Single-Event MicroKinetics of Aromatics Hydrogenation on Pt/H-ZSM22. Industrial & Engineering Chemistry Research, 2011, 50, 12933-12945.	1.8	29
231	Comprehensive CFD Simulation of Product Yields and Coking Rates for a Floor- and Wall-Fired Naphtha Cracking Furnace. Industrial & Engineering Chemistry Research, 2011, 50, 13672-13685.	1.8	29
232	Liquid-phase alkylation of benzene with octenes over Y zeolites: Kinetic modeling including acidity descriptors. Journal of Catalysis, 2012, 294, 136-150.	3.1	29
233	Kinetics of \hat{I}_{\pm} hydrogen abstractions from thiols, sulfides and thiocarbonyl compounds. Physical Chemistry Chemical Physics, 2012, 14, 12773.	1.3	29
234	Coupled simulation of an industrial naphtha cracking furnace equipped with long-flame and radiation burners. Computers and Chemical Engineering, 2012, 38, 24-34.	2.0	29

#	Article	IF	CITATIONS
235	The Role of Different Types of CuO in CuO–CeO2/Al2O3 for Total Oxidation. Catalysis Letters, 2014, 144, 32-43.	1.4	29
236	Impact of Radiation Models in Coupled Simulations of Steam Cracking Furnaces and Reactors. Industrial & Engineering Chemistry Research, 2015, 54, 2453-2465.	1.8	29
237	Dynamic simulation of fouling in steam cracking reactors using CFD. Chemical Engineering Journal, 2017, 329, 77-87.	6.6	29
238	Automated reaction database and reaction network analysis: extraction of reaction templates using cheminformatics. Journal of Cheminformatics, 2018, 10, 11.	2.8	29
239	Reuse of CO ₂ in energy intensive process industries. Chemical Communications, 2021, 57, 10967-10982.	2.2	29
240	Simulation of Pilot- and Industrial-Scale Vinyl Chloride Batch Suspension Polymerization Reactors. Industrial & Engineering Chemistry Research, 2007, 46, 1179-1196.	1.8	28
241	Benzene adsorption on binary Pt3M alloys and surface alloys: a DFT study. Physical Chemistry Chemical Physics, 2013, 15, 12197.	1.3	28
242	Unravelling the Formation of Pt–Ga Alloyed Nanoparticles on Calcined Ga-Modified Hydrotalcites by <i>in Situ</i> XAS. Chemistry of Materials, 2014, 26, 5936-5949.	3.2	28
243	Advanced Elemental Characterization during Pt–In Catalyst Formation by Wavelet Transformed X-ray Absorption Spectroscopy. Analytical Chemistry, 2015, 87, 3520-3526.	3.2	28
244	DFT Investigation into Alumina ALD Growth Inhibition on Hydroxylated Amorphous Silica Surface. Journal of Physical Chemistry C, 2015, 119, 18380-18388.	1.5	28
245	Optimization of the in Situ Pretreatment of High Temperature Ni–Cr Alloys for Ethane Steam Cracking. Industrial & Engineering Chemistry Research, 2017, 56, 1424-1438.	1.8	28
246	Quantitative compositional analysis of Estonian shale oil using comprehensive two dimensional gas chromatography. Fuel Processing Technology, 2017, 167, 241-249.	3.7	28
247	Computational Fluid Dynamics-Assisted Process Intensification Study for Biomass Fast Pyrolysis in a Gas–Solid Vortex Reactor. Energy & Fuels, 2018, 32, 10169-10183.	2.5	28
248	Kinetics of chemical processes: From molecular to industrial scale. Journal of Catalysis, 2021, 404, 745-759.	3.1	28
249	The state of Rh during the partial oxidation of methane into synthesis gas. Catalysis Letters, 1999, 57, 9-17.	1.4	27
250	Density functional study of the adsorption of 1,4-cyclohexadiene on Pt(111): origin of the C–H stretch red shift. Surface Science, 2002, 513, 315-327.	0.8	27
251	Synthesis, characterization and sorption properties of NH2-MIL-47. Physical Chemistry Chemical Physics, 2012, 14, 15562.	1.3	27
252	Controlled synthesis of poly[(butyl methacrylate)â€ <i>co</i> â€(butyl acrylate)] via activator regenerated by electron transfer atom transfer radical polymerization: insights and improvement. Polymer International, 2014, 63, 848-857.	1.6	27

#	Article	IF	CITATIONS
253	Experimental and Theoretical Methods in Kinetic Studies of Heterogeneously Catalyzed Reactions. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 563-594.	3.3	27
254	Firstâ€principles based group additivity values for thermochemical properties of substituted aromatic compounds. AICHE Journal, 2015, 61, 3858-3870.	1.8	27
255	Early stages in the formation and burning of graphene on a Pt/Mg(Al)O dehydrogenation catalyst: A temperature- and time-resolved study. Journal of Catalysis, 2016, 344, 482-495.	3.1	27
256	The role of hydrogen during Pt–Ga nanocatalyst formation. Physical Chemistry Chemical Physics, 2016, 18, 3234-3243.	1.3	27
257	Effect of zeolite confinement on the conversion of 1-butanol to butene isomers: mechanistic insights from DFT based microkinetic modelling. Catalysis Science and Technology, 2017, 7, 2978-2997.	2.1	27
258	DFT Investigation of Alkoxide vs Alkylammonium Formation in Amine-Substituted Zeolites. Journal of Physical Chemistry B, 2005, 109, 7952-7960.	1.2	26
259	Modeling the Composition of Crude Oil Fractions Using Constrained Homologous Series. Industrial & Engineering Chemistry Research, 2011, 50, 10850-10858.	1.8	26
260	Elucidating complex catalytic mechanisms based on transient pulse-response kinetic data. Chemical Engineering Science, 2014, 110, 20-30.	1.9	26
261	Impact of flue gas radiative properties and burner geometry in furnace simulations. AICHE Journal, 2015, 61, 936-954.	1.8	26
262	An alternative method to estimate the bulk backbiting rate coefficient in acrylate radical polymerization. Polymer Chemistry, 2016, 7, 6521-6528.	1.9	26
263	Detailed Experimental and Kinetic Modeling Study of Cyclopentadiene Pyrolysis in the Presence of Ethene. Energy & Fuels, 2018, 32, 3920-3934.	2.5	26
264	FeO controls the sintering of iron-based oxygen carriers in chemical looping CO2 conversion. Journal of CO2 Utilization, 2020, 40, 101216.	3.3	26
265	Reducing CO2 emissions of existing ethylene plants: Evaluation of different revamp strategies to reduce global CO2 emission by 100 million tonnes. Journal of Cleaner Production, 2022, 362, 132127.	4.6	26
266	Thermodynamic study of benzene and hydrogen coadsorption on Pd(111). Physical Chemistry Chemical Physics, 2014, 16, 23754-23768.	1.3	25
267	Rule-based ab initio kinetic model for alkyl sulfide pyrolysis. Chemical Engineering Journal, 2015, 278, 385-393.	6.6	25
268	Towards first-principles based kinetic modeling of biomass fast pyrolysis. Biomass Conversion and Biorefinery, 2017, 7, 305-317.	2.9	25
269	Access to the Î ² -scission rate coefficient in acrylate radical polymerization by careful scanning of pulse laser frequencies at elevated temperature. Reaction Chemistry and Engineering, 2018, 3, 807-815.	1.9	25
270	Exploring the stability of Fe2O3-MgAl2O4 oxygen storage materials for CO production from CO2. Journal of CO2 Utilization, 2019, 29, 36-45.	3.3	25

#	Article	IF	CITATIONS
271	Looking inside a Ni-Fe/MgAl2O4 catalyst for methane dry reforming via Mössbauer spectroscopy and in situ QXAS. Applied Catalysis B: Environmental, 2022, 300, 120720.	10.8	25
272	Exploring the Full Potential of Reversible Deactivation Radical Polymerization Using Pareto-Optimal Fronts. Polymers, 2015, 7, 655-679.	2.0	24
273	Droplet–wall interaction upon impingement of heavy hydrocarbon droplets on a heated wall. Chemical Engineering Science, 2015, 130, 275-289.	1.9	24
274	Necessity and Feasibility of 3D Simulations of Steam Cracking Reactors. Industrial & Engineering Chemistry Research, 2015, 54, 12270-12282.	1.8	24
275	Chain Transfer in Degenerative RAFT Polymerization Revisited: A Comparative Study of Literature Methods. Macromolecular Theory and Simulations, 2016, 25, 104-115.	0.6	24
276	Role of intermediates in reaction pathways from ethene to hydrocarbons over H-ZSM-5. Applied Catalysis A: General, 2017, 538, 207-220.	2.2	24
277	Experimentally validated numerical study of gas-solid vortex unit hydrodynamics. Powder Technology, 2017, 305, 794-808.	2.1	24
278	Catalytic Reductive Aminolysis of Reducing Sugars: Elucidation of Reaction Mechanism. ACS Catalysis, 2018, 8, 4201-4212.	5.5	24
279	Model-Based Catalyst Selection for the Oxidative Coupling of Methane in an Adiabatic Fixed-Bed Reactor. Industrial & Engineering Chemistry Research, 2018, 57, 16295-16307.	1.8	24
280	Process Intensification in a Gas–Solid Vortex Unit: Computational Fluid Dynamics Model Based Analysis and Design. Industrial & Engineering Chemistry Research, 2019, 58, 12751-12765.	1.8	24
281	Development of a Transient Kinetic Model for the Simultaneous Adsorption of SO2â^'NOx over Na/γ-Al2O3 Sorbent. Industrial & Engineering Chemistry Research, 2001, 40, 119-130.	1.8	23
282	Hydrogenated amorphous silicon nanostructures: novel structure–reactivity relationships for cyclization and ring opening in the gas phase. Theoretical Chemistry Accounts, 2011, 128, 91-113.	0.5	23
283	Assessing the Potential of Crude Tall Oil for the Production of Green-Base Chemicals: An Experimental and Kinetic Modeling Study. Industrial & Engineering Chemistry Research, 2014, 53, 18430-18442.	1.8	23
284	Challenges and opportunities for molecule-based management of chemical processes. Current Opinion in Chemical Engineering, 2016, 13, 142-149.	3.8	23
285	Quantitative on-line analysis of sulfur compounds in complex hydrocarbon matrices. Journal of Chromatography A, 2017, 1509, 102-113.	1.8	23
286	Decomposition and isomerization of 1-pentanol radicals and the pyrolysis of 1-pentanol. Combustion and Flame, 2018, 196, 500-514.	2.8	23
287	Descriptor–property relationships in heterogeneous catalysis: exploiting synergies between statistics and fundamental kinetic modelling. Catalysis Science and Technology, 2019, 9, 3109-3125.	2.1	23
288	Catalyst ignition and extinction: A microkinetics-based bifurcation study of adiabatic reactors for oxidative coupling of methane. Chemical Engineering Science, 2019, 199, 635-651.	1.9	23

#	Article	IF	CITATIONS
289	An extension of the preconditioned advection upstream splitting method for 3D two-phase flow calculations in circulating fluidized beds. Computers and Chemical Engineering, 2002, 26, 1677-1702.	2.0	22
290	Coke combustion and gasification kinetics in ethane steam crackers. AICHE Journal, 2005, 51, 1415-1428.	1.8	22
291	The influence of phosphorus containing compounds on steam cracking of n-hexane. Journal of Analytical and Applied Pyrolysis, 2006, 77, 133-148.	2.6	22
292	Thiol-Michael addition in polar aprotic solvents: nucleophilic initiation or base catalysis?. Polymer Chemistry, 2017, 8, 1341-1352.	1.9	22
293	On-the-fly ab initio calculations toward accurate rate coefficients. Proceedings of the Combustion Institute, 2019, 37, 283-290.	2.4	22
294	Hierarchical Fe-modified MgAl ₂ O ₄ as a Ni-catalyst support for methane dry reforming. Catalysis Science and Technology, 2020, 10, 6987-7001.	2.1	22
295	The alkaline anthraquinone-2-sulfonate-H2O2-catalyzed oxidative degradation of lactose: An improved Spengler-Pfannenstiel oxidation. Carbohydrate Research, 1991, 214, 71-85.	1.1	21
296	Density functional theory investigation of the stereochemistry effects on 1H and 13C NMR chemical shifts of poly(vinyl chloride) oligomers. Chemical Physics Letters, 2005, 411, 207-213.	1.2	21
297	Theoretical study on the alteration of fundamental zeolite properties by methylene functionalization. Microporous and Mesoporous Materials, 2006, 96, 350-356.	2.2	21
298	Noise in temporal analysis of products (TAP) pulse responses. Catalysis Today, 2007, 121, 269-281.	2.2	21
299	Catalytic Cracking of Methylcyclohexane on FAU, MFI, and Bimodal Porous Materials: Influence of Acid Properties and Pore Topology. Industrial & Engineering Chemistry Research, 2010, 49, 10486-10495.	1.8	21
300	Computational Investigation of the Aminolysis of RAFT Macromolecules. Journal of Organic Chemistry, 2016, 81, 11626-11634.	1.7	21
301	Numerical and experimental evaluation of heat transfer in helically corrugated tubes. AICHE Journal, 2018, 64, 1702-1713.	1.8	21
302	Pressure-induced deactivation of core-shell nanomaterials for catalyst-assisted chemical looping. Applied Catalysis B: Environmental, 2019, 247, 86-99.	10.8	21
303	Conservatively Perturbed Equilibrium (CPE) in chemical kinetics. Chemical Engineering Science, 2019, 196, 384-390.	1.9	21
304	The role of chemistry in the oscillating combustion of hydrocarbons: An experimental and theoretical study. Chemical Engineering Journal, 2020, 385, 123401.	6.6	21
305	What Makes Fe-Modified MgAl ₂ O ₄ an Active Catalyst Support? Insight from X-ray Raman Scattering. ACS Catalysis, 2020, 10, 6613-6622.	5.5	21
306	A Unified Single-Event Microkinetic Model for Alkane Hydroconversion in Different Aggregation States on Pt/Hâ^'USY-Zeolites. Journal of Physical Chemistry B, 2006, 110, 6750-6758.	1.2	20

#	Article	IF	CITATIONS
307	A joined theoretical–experimental investigation on the 1H and 13C NMR chemical shifts of chloro-alkenes. Chemical Physics Letters, 2007, 436, 388-393.	1.2	20
308	Time-resolved operando X-ray absorption study of CuO–CeO2/Al2O3 catalyst during total oxidation of propane. Applied Catalysis B: Environmental, 2010, 97, 381-388.	10.8	20
309	Thermodynamic time-invariances: Theory of TAP pulse-response experiments. Chemical Engineering Science, 2011, 66, 4683-4689.	1.9	20
310	Kinetic Modeling of αâ€Hydrogen Abstractions from Unsaturated and Saturated Oxygenate Compounds by Carbon entered Radicals. ChemPhysChem, 2014, 15, 1849-1866.	1.0	20
311	Kinetic Modeling of α-Hydrogen Abstractions from Unsaturated and Saturated Oxygenate Compounds by Hydrogen Atoms. Journal of Physical Chemistry A, 2014, 118, 9296-9309.	1.1	20
312	Ab Initio Investigation of Surface Chemistry of Alumina ALD on Hydroxylated γ-Alumina Surface. Journal of Physical Chemistry C, 2015, 119, 13050-13061.	1.5	20
313	Ethanol dehydration pathways in H-ZSM-5: Insights from temporal analysis of products. Catalysis Today, 2020, 355, 822-831.	2.2	20
314	An assessment of electrified methanol production from an environmental perspective. Green Chemistry, 2021, 23, 7243-7258.	4.6	20
315	Biomass fast pyrolysis in an innovative gas-solid vortex reactor: Experimental proof of concept. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105165.	2.6	20
316	Kinetics for the partial oxidation of methane on a Pt gauze at low conversions. AICHE Journal, 2000, 46, 1837-1849.	1.8	19
317	Multi-zone TAP-reactors theory and application IV. Ideal and non-ideal boundary conditions. Chemical Engineering Science, 2006, 61, 1878-1891.	1.9	19
318	Modeling the Coke Formation in the Convection Section Tubes of a Steam Cracker. Industrial & Engineering Chemistry Research, 2010, 49, 5752-5764.	1.8	19
319	Kinetic Modeling of Hydrogen Abstractions Involving Sulfur Radicals. ChemPhysChem, 2013, 14, 3751-3771.	1.0	19
320	New Patterns in Steady-State Chemical Kinetics: Intersections, Coincidences, Map of Events (Two-Step) Tj ETQq(0 0 0 rgBT 1.1	/Oygrlock 10
321	Pyrolysis and combustion chemistry of tetrahydropyran: Experimental and modeling study. Combustion and Flame, 2015, 162, 4283-4303.	2.8	19
322	Oxidative Coupling of Methane: Opportunities for Microkinetic Modelâ€Assisted Process Implementations. Chemical Engineering and Technology, 2016, 39, 1996-2010.	0.9	19
323	Estimating the photodissociation quantum yield from PLP-SEC peak heights. Polymer Chemistry, 2017, 8, 3124-3128.	1.9	19

³²⁴Group additive modeling of substituent effects in monocyclic aromatic hydrocarbon radicals. AICHE1.819Journal, 2017, 63, 2089-2106.1.819

#	Article	IF	CITATIONS
325	Ab initio coverage-dependent microkinetic modeling of benzene hydrogenation on Pd(111). Catalysis Science and Technology, 2017, 7, 5267-5283.	2.1	19
326	Speeding up turbulent reactive flow simulation via a deep artificial neural network: A methodology study. Chemical Engineering Journal, 2022, 429, 132442.	6.6	19
327	Oxidative Pyrolysis of Ethane. Industrial & Engineering Chemistry Research, 1997, 36, 3248-3251.	1.8	18
328	Title is missing!. Cattech, 2002, 6, 140-149.	2.6	18
329	A Microkinetic Vision on High-Throughput Catalyst Formulation and Optimization: Development of an Appropriate Software Tool. Topics in Catalysis, 2010, 53, 64-76.	1.3	18
330	Computational Study and Kinetic Analysis of the Aminolysis of Thiolactones. Journal of Organic Chemistry, 2015, 80, 8520-8529.	1.7	18
331	Compositional Characterization of Pyrolysis Fuel Oil from Naphtha and Vacuum Gas Oil. Energy & Fuels, 2018, 32, 1276-1286.	2.5	18
332	Interplay of Head, Tail, and Mid-Chain Radicals in Bulk Free-Radical and Reversible Degenerative Addition Fragmentation Chain-Transfer Polymerizations of Vinyl Acetate. Macromolecules, 2019, 52, 4555-4569.	2.2	18
333	A fully oxidized V2O5/TiO2(001)-anatase system studied with in situ synchrotron photoelectron spectroscopy. Surface Science, 2005, 584, 179-186.	0.8	17
334	Coupled simulation of the flue gas and process gas side of a steam cracker convection section. AICHE Journal, 2009, 55, 2773-2787.	1.8	17
335	Catalytic Cracking of 2,2,4-Trimethylpentane on FAU, MFI, and Bimodal Porous Materials: Influence of Acid Properties and Pore Topology. Industrial & Engineering Chemistry Research, 2010, 49, 6815-6823.	1.8	17
336	Reprint of "Ethanol to higher hydrocarbons over Ni, Ga, Fe-modified ZSM-5: Effect of metal content― Applied Catalysis A: General, 2015, 504, 621-630.	2.2	17
337	Experimental and kinetic modeling study of the pyrolysis and oxidation of 1,5-hexadiene: The reactivity of allylic radicals and their role in the formation of aromatics. Fuel, 2017, 208, 779-790.	3.4	17
338	Fe ₂ O ₃ –MgAl ₂ O ₄ for CO Production from CO ₂ : Mössbauer Spectroscopy and in Situ X-ray Diffraction. ACS Sustainable Chemistry and Engineering, 2019, 7, 9553-9565.	3.2	17
339	An experimental and numerical study of the suppression of jets, counterflow, and backflow in vortex units. AICHE Journal, 2019, 65, e16614.	1.8	17
340	Methane reforming to valuable products by an atmospheric pressure direct current discharge. Journal of Cleaner Production, 2019, 209, 655-664.	4.6	17
341	Microstructured ZrO2 coating of iron oxide for enhanced CO2 conversion. Applied Catalysis B: Environmental, 2021, 292, 120194.	10.8	17
342	Simulation of a slurryâ€bubble column reactor for Fischerâ€Tropsch synthesis using singleâ€event microkinetics. AICHE Journal, 2009, 55, 2159-2170.	1.8	16

#	Article	IF	CITATIONS
343	Steady-state simulation of Fluid Catalytic Cracking riser reactors using a decoupled solution method with feedback of the cracking reactions on the flow. Chemical Engineering Research and Design, 2010, 88, 290-303.	2.7	16
344	Catalytic cracking of alkanes on FAU: Singleâ€event microkinetic modeling including acidity descriptors. AICHE Journal, 2012, 58, 2202-2215.	1.8	16
345	Momentary Equilibrium in Transient Kinetics and Its Application for Estimating the Concentration of Catalytic Sites. Industrial & Engineering Chemistry Research, 2013, 52, 15417-15427.	1.8	16
346	Periodic DFT Study of Benzene Adsorption on Pd(100) and Pd(110) at Medium and Saturation Coverage. Journal of Physical Chemistry C, 2014, 118, 21483-21499.	1.5	16
347	Group Additive Kinetics for Hydrogen Transfer Between Oxygenates. Journal of Physical Chemistry A, 2015, 119, 6961-6980.	1.1	16
348	Improved Mechanistic Insights into Radical Sulfinyl Precursor MDMO-PPV Synthesis by Combining Microflow Technology and Computer Simulations. Macromolecules, 2015, 48, 8294-8306.	2.2	16
349	Combined characterization using HT-GC × GC-FID and FT-ICR MS: A pyrolysis fuel oil case study. Fuel Processing Technology, 2018, 182, 15-25.	3.7	16
350	CO2 sorption properties of Li4SiO4 with a Li2ZrO3 coating. Journal of CO2 Utilization, 2019, 34, 688-699.	3.3	16
351	Catalyst screening for the oxidative coupling of methane: from isothermal to adiabatic operation <i>via</i> microkinetic simulations. Reaction Chemistry and Engineering, 2020, 5, 584-596.	1.9	16
352	Economics of the oxidative coupling of methane as an add-on unit for naphtha cracking. Chemical Engineering and Technology, 1995, 18, 12-16.	0.9	15
353	Kinetic models for catalytic reactions from first principles: benzene hydrogenation. Molecular Physics, 2004, 102, 267-272.	0.8	15
354	Diffusion-controlled reactions in vinyl chloride suspension polymerization. Macromolecular Symposia, 2004, 206, 215-228.	0.4	15
355	A new methodology to probe Shape Selectivity in Porous Adsorbents. Microporous and Mesoporous Materials, 2008, 116, 607-613.	2.2	15
356	Catalytic and molecular separation properties of Zeogrids and Zeotiles. Catalysis Today, 2011, 168, 17-27.	2.2	15
357	Extension of the Single-Event Microkinetic Model to Alkyl Substituted Monoaromatics Hydrogenation on a Pt Catalyst. ACS Catalysis, 2012, 2, 1305-1318.	5.5	15
358	Probability density function simulation of turbulent reactive gasâ€solid flow in a FCC riser. AICHE Journal, 2012, 58, 268-284.	1.8	15
359	Comparative Kinetic Monte Carlo study of the Sulfinyl and Dithiocarbamate Precursor Route toward Highly Regioregular MDMOâ€₽PV. Macromolecular Theory and Simulations, 2013, 22, 246-255.	0.6	15
360	Radial pressure profiles in a coldâ€flow gasâ€solid vortex reactor. AICHE Journal, 2015, 61, 4114-4125.	1.8	15

#	Article	IF	CITATIONS
361	Group additive kinetic modeling for carbonâ€centered radical addition to oxygenates and βâ€scission of oxygenates. AICHE Journal, 2016, 62, 802-814.	1.8	15
362	Periodic reactive flow simulation: Proof of concept for steam cracking coils. AICHE Journal, 2017, 63, 1715-1726.	1.8	15
363	Quantifying the dominant factors in Cu catalyst deactivation during glycerol hydrogenolysis. Journal of Industrial and Engineering Chemistry, 2017, 54, 270-277.	2.9	15
364	<i>Ab initio</i> derived group additivity model for intramolecular hydrogen abstraction reactions. Physical Chemistry Chemical Physics, 2018, 20, 10877-10894.	1.3	15
365	On the mechanisms of secondary flows in a gas vortex unit. AICHE Journal, 2018, 64, 1859-1873.	1.8	15
366	Kinetics of Lifetime Changes in Bimetallic Nanocatalysts Revealed by Quick Xâ€ray Absorption Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 12430-12434.	7.2	15
367	Experimental confirmation of a new invariant for a non-linear chemical reaction. Chemical Engineering Science, 2018, 191, 262-267.	1.9	15
368	An evaluation of the impact of SG1 disproportionation and the addition of styrene in NMP of methyl methacrylate. AICHE Journal, 2018, 64, 2545-2559.	1.8	15
369	Azimuthal and radial flow patterns of 1g-Geldart B-type particles in a gas-solid vortex reactor. Powder Technology, 2019, 354, 410-422.	2.1	15
370	CFD-based assessment of steady-state multiplicity in a gas-solid vortex reactor for oxidative coupling of methane. Chemical Engineering and Processing: Process Intensification, 2021, 165, 108434.	1.8	15
371	Filtered gas–solid momentum transfer models and their application to 3D steady-state riser simulations. Chemical Engineering Science, 2007, 62, 5451-5457.	1.9	14
372	GPU based simulation of reactive mixtures with detailed chemistry in combination with tabulation and an analytical Jacobian. Computers and Chemical Engineering, 2014, 71, 521-531.	2.0	14
373	Simulation of the coking phenomenon in the superheater of a steam cracker. Chemical Engineering Science, 2014, 110, 31-43.	1.9	14
374	Rate-Reactivity Model: A New Theoretical Basis for Systematic Kinetic Characterization of Heterogeneous Catalysts. International Journal of Chemical Kinetics, 2016, 48, 304-317.	1.0	14
375	A Single-Event MicroKinetic model for the cobalt catalyzed Fischer-Tropsch Synthesis. Applied Catalysis A: General, 2016, 524, 149-162.	2.2	14
376	Techno-economic analysis of an absorption based methanol to olefins recovery section. Applied Thermal Engineering, 2017, 115, 477-490.	3.0	14
377	Fast pyrolysis oil stabilization kinetics over a Ni-Cu catalyst using propionic acid as a model compound. Applied Catalysis B: Environmental, 2018, 233, 46-57.	10.8	14
378	catchyFOAM: Euler–Euler CFD Simulations of Fluidized Bed Reactors with Microkinetic Modeling of Gas-Phase and Catalytic Surface Chemistry. Energy & Fuels, 2021, 35, 2545-2561.	2.5	14

#	Article	IF	CITATIONS
379	Coupling CO2 utilization and NO reduction in chemical looping manner by surface carbon. Applied Catalysis B: Environmental, 2021, 297, 120472.	10.8	14
380	An in-situ Reduction/Oxidation XAS Study on the EL10V8 VOx/TiO2(Anatase) Powder Catalyst. Catalysis Letters, 2006, 107, 61-71.	1.4	13
381	On nearâ€wall jets in a discâ€like gas vortex unit. AICHE Journal, 2017, 63, 1740-1756.	1.8	13
382	Mapping the kinetic events in a linear two-step irreversible-reversible reaction mechanism. Chemical Engineering Science, 2017, 158, 370-380.	1.9	13
383	New invariances for chemical reactions from Scaled Incremental Conversion (SIC). Chemical Engineering Science, 2018, 184, 25-32.	1.9	13
384	Application of Py-GC/MS coupled with PARAFAC2 and PLS-DA to study fast pyrolysis of genetically engineered poplars. Journal of Analytical and Applied Pyrolysis, 2018, 129, 101-111.	2.6	13
385	Insight in kinetics from preâ€edge features using time resolved <i>in situ</i> XAS. AICHE Journal, 2018, 64, 1339-1349.	1.8	13
386	Sensitivity Analysis of Singleâ€Phase Isothermal Free Radical–Induced Grafting of Polyethylene. Macromolecular Theory and Simulations, 2018, 27, 1800036.	0.6	13
387	Balance between model detail and experimental information <scp>in</scp> steam methane reforming <scp>o</scp> ver a Ni/MgO‣iO ₂ catalyst. AICHE Journal, 2019, 65, 1222-1233.	1.8	13
388	Exceeding Equilibrium CO ₂ Conversion by Plasma-Assisted Chemical Looping. ACS Energy Letters, 2022, 7, 1896-1902.	8.8	13
389	Simultaneous adsorption of SO2NOx from flue gases in a riser configuration. AICHE Journal, 2001, 47, 2831-2844.	1.8	12
390	Structural and Kinetic Study of the Reduction of CuO–CeO2/Al2O3 by Time-Resolved X-ray Diffraction. Catalysis Letters, 2012, 142, 959-968.	1.4	12
391	Kinetics of Homolytic Substitutions by Hydrogen Atoms at Thiols and Sulfides. ChemPhysChem, 2013, 14, 1703-1722.	1.0	12
392	Conversion of Solid Waste to Diesel via Catalytic Pressureless Depolymerization: Pilot Scale Production and Detailed Compositional Characterization. Energy & Fuels, 2016, 30, 8292-8303.	2.5	12
393	Computational fluid dynamicsâ€based steam cracking furnace optimization using feedstock flow distribution. AICHE Journal, 2017, 63, 3199-3213.	1.8	12
394	Anisole Hydrotreatment Kinetics on CoMo Catalyst in the Absence of Sulfur: Experimental Investigation and Model Construction. Energy & Fuels, 2017, 31, 7082-7092.	2.5	12
395	Size- and composition-controlled Pt–Sn bimetallic nanoparticles prepared by atomic layer deposition. RSC Advances, 2017, 7, 20201-20205.	1.7	12
396	Group additive modeling of cyclopentane pyrolysis. Journal of Analytical and Applied Pyrolysis, 2017, 128, 437-450.	2.6	12

#	Article	IF	CITATIONS
397	Large-Scale Exploitation of Bimodal Reaction Sequences Including Degradation: Comparison of Jet Loop and Trickle Bed Reactors. Industrial & Engineering Chemistry Research, 2017, 56, 14192-14199.	1.8	12
398	Coking Tendency of 25Cr-35Ni Alloys: Influence of Temperature, Sulfur Addition, and Cyclic Aging. Industrial & Engineering Chemistry Research, 2018, 57, 3138-3148.	1.8	12
399	Kinetics of homogeneous and heterogeneous reactions in the reductive aminolysis of glucose with dimethylamine. Applied Catalysis B: Environmental, 2018, 227, 161-169.	10.8	12
400	Abâ€Initioâ€Based Kinetic Modeling to Understand RAFT Exchange: The Case of 2 yanoâ€2â€Propyl Dodecyl Trithiocarbonate and Styrene. Macromolecular Rapid Communications, 2018, 39, 1700403.	2.0	12
401	Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis. Energy & Fuels, 2018, 32, 7153-7168.	2.5	12
402	Combustion of ethylamine, dimethylamine and diethylamine: Theoretical and kinetic modeling study. Proceedings of the Combustion Institute, 2021, 38, 585-592.	2.4	12
403	Fast estimation of standard enthalpy of formation with chemical accuracy by artificial neural network correction of low-level-of-theory ab initio calculations. Chemical Engineering Journal, 2021, 426, 131304.	6.6	12
404	Simultaneous solution algorithms for Eulerian–Eulerian gas–solid flow models: Stability analysis and convergence behaviour of a point and a plane solver. Journal of Computational Physics, 2005, 207, 309-353.	1.9	11
405	Development of an Integrated Informatics Toolbox: HT Kinetic and Virtual Screening. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 85-97.	0.6	11
406	Microkinetic Modeling of Structural Properties of Poly(vinyl chloride). Macromolecules, 2009, 42, 7797-7810.	2.2	11
407	Kinetic study of the thermal rearrangement of cis- and trans-2-pinanol. Journal of Analytical and Applied Pyrolysis, 2011, 90, 187-196.	2.6	11
408	An experimental and kinetic modeling study of Î ³ -valerolactone pyrolysis. Combustion and Flame, 2016, 164, 183-200.	2.8	11
409	Interplay of Kinetics and Thermodynamics in Catalytic Steam Methane Reforming over Ni/MgO-SiO2. Industrial & Engineering Chemistry Research, 2017, 56, 1148-1158.	1.8	11
410	Large eddy simulation of tubular reactors with spherical dimples. Chemical Engineering Journal, 2020, 380, 122463.	6.6	11
411	Experimental and kinetic modeling study of the pyrolysis and oxidation of diethylamine. Fuel, 2020, 275, 117744.	3.4	11
412	Carbon monoxide production using a steel mill gas in a combined chemical looping process. Journal of Energy Chemistry, 2022, 68, 811-825.	7.1	11
413	Second-order statistical regression and conditioning of replicate transient kinetic data. Chemical Engineering Science, 2008, 63, 1850-1865.	1.9	10
414	TAP investigation of hydrogen and carbon monoxide adsorption on a silica-supported cobalt catalyst. Applied Catalysis A: General, 2010, 375, 116-123.	2.2	10

#	Article	IF	CITATIONS
415	Microkinetic model for the pyrolysis of methyl esters: From model compound to industrial biodiesel. AICHE Journal, 2015, 61, 4309-4322.	1.8	10
416	Predicting kinetic dependences and closing the balance: Wei and Prater revisited. Chemical Engineering Science, 2015, 123, 328-333.	1.9	10
417	Insights into the Reaction Mechanism of Ethanol Conversion into Hydrocarbons on Hâ€ZSMâ€5. Angewandte Chemie, 2016, 128, 13009-13013.	1.6	10
418	A drag model for the gas-solid vortex unit. Powder Technology, 2017, 312, 210-221.	2.1	10
419	Impact of Initial Surface Roughness and Aging on Coke Formation during Ethane Steam Cracking. Industrial & Engineering Chemistry Research, 2017, 56, 12495-12507.	1.8	10
420	Combined Chemical Looping: New Possibilities for Energy Storage and Conversion. Energy & Fuels, 2017, 31, 11509-11514.	2.5	10
421	Computational Fluid Dynamics-Based Study of a High Emissivity Coil Coating in an Industrial Steam Cracker. Industrial & Engineering Chemistry Research, 2018, 57, 16782-16794.	1.8	10
422	Analytical Py-GC/MS of Genetically Modified Poplar for the Increased Production of Bio-aromatics. Computational and Structural Biotechnology Journal, 2019, 17, 599-610.	1.9	10
423	Crude to Olefins: Effect of Feedstock Composition on Coke Formation in a Bench-Scale Steam Cracking Furnace. Industrial & Engineering Chemistry Research, 2020, 59, 2849-2859.	1.8	10
424	On the primary thermal decomposition pathways of hydroxycinnamic acids. Proceedings of the Combustion Institute, 2021, 38, 4207-4214.	2.4	10
425	Relaxation Processes during the Selective Oxidation of Aqueous Ethanol with Oxygen on a Platinum Catalyst. Industrial & Engineering Chemistry Research, 1997, 36, 3065-3074.	1.8	9
426	A coordinative saturated vanadium containing metal organic framework that shows a remarkable catalytic activity. Studies in Surface Science and Catalysis, 2010, 175, 329-332.	1.5	9
427	Thermal Decomposition of Sulfur Compounds and their Role in Coke Formation during Steam Cracking of Heptane. Chemical Engineering and Technology, 2016, 39, 2096-2106.	0.9	9
428	1D Model for Coupled Simulation of Steam Cracker Convection Section with Improved Evaporation Model. Chemie-Ingenieur-Technik, 2016, 88, 1650-1664.	0.4	9
429	Incident Radiative Heat Flux Based Method for the Coupled Run Length Simulation of Steam Cracking Furnaces. Industrial & Engineering Chemistry Research, 2017, 56, 4156-4172.	1.8	9
430	Thermal decomposition of furans with oxygenated substituents: A combined experimental and quantum chemical study. Proceedings of the Combustion Institute, 2021, 38, 699-707.	2.4	9
431	Intensifying blue hydrogen production by in situ CO2 utilisation. Journal of CO2 Utilization, 2022, 61, 102014.	3.3	9
432	Oxidation of methyl and n-octyl α-d-glucopyranoside over graphite-supported platinum catalysts: effect of the alkyl substituent on activity and selectivity. Carbohydrate Research, 1997, 303, 175-183.	1.1	8

#	Article	IF	CITATIONS
433	Transalkylation of Methylamines:Â Kinetics and Industrial Simulation. Industrial & Engineering Chemistry Research, 2004, 43, 5123-5132.	1.8	8
434	Assessment of end-group functionality in atom transfer radical polymerization of N-isopropylacrylamide. European Polymer Journal, 2013, 49, 2344-2355.	2.6	8
435	Symmetry calculation for molecules and transition states. Journal of Computational Chemistry, 2015, 36, 181-192.	1.5	8
436	A novel method for the measurement of degenerative chain transfer coefficients: proof of concept and experimental validation. Polymer Chemistry, 2016, 7, 3334-3349.	1.9	8
437	Kinetics of Multiâ€Step Redox Processes by Timeâ€Resolved In Situ Xâ€ray Diffraction. Chemie-Ingenieur-Technik, 2016, 88, 1684-1692.	0.4	8
438	Analytical Rate Expressions Accounting for the Elementary Steps in Benzene Hydrogenation on Pt. Industrial & Engineering Chemistry Research, 2017, 56, 12953-12962.	1.8	8
439	The Relevance of Multiâ€Injection and Temperature Profiles to Design Multiâ€Phase Reactive Processing of Polyolefins. Macromolecular Theory and Simulations, 2019, 28, 1900035.	0.6	8
440	Chemical and Structural Configuration of Pt-Doped Metal Oxide Thin Films Prepared by Atomic Layer Deposition. Chemistry of Materials, 2019, 31, 9673-9683.	3.2	8
441	Pyrometer-based control of a steam cracking furnace. Chemical Engineering Research and Design, 2020, 153, 380-390.	2.7	8
442	Behaviour of Platinum-Tin during CO2-assisted propane dehydrogenation: Insights from quick X-ray absorption spectroscopy. Journal of Catalysis, 2022, 408, 356-371.	3.1	8
443	Microkinetic model validation for Fischer-Tropsch synthesis at methanation conditions based on steady state isotopic transient kinetic analysis. Journal of Industrial and Engineering Chemistry, 2022, 105, 191-209.	2.9	8
444	Intensifying Mass and Heat Transfer using a High-g Stator-Rotor Vortex Chamber. Chemical Engineering and Processing: Process Intensification, 2021, 169, 108638.	1.8	8
445	Initiator efficiency modeling for vinyl chloride suspension polymerization. Chemical Engineering Journal, 2009, 154, 203-210.	6.6	7
446	Identifiability of rate coefficients in linear reaction networks from isothermal transient experimental data. Chemical Engineering Science, 2010, 65, 2333-2343.	1.9	7
447	On-line Analysis of Nitrogen Containing Compounds in Complex Hydrocarbon Matrixes. Journal of Visualized Experiments, 2016, , .	0.2	7
448	CFD simulations of Industrial Steam Cracking Reactors: Turbulence–Chemistry Interaction and Dynamic Zoning. Industrial & Engineering Chemistry Research, 2017, 56, 14959-14971.	1.8	7
449	QUANTIS: Data quality assessment tool by clustering analysis. International Journal of Chemical Kinetics, 2019, 51, 872-885.	1.0	7
450	The switching point between kinetic and thermodynamic control. Computers and Chemical Engineering, 2019, 125, 606-611.	2.0	7

#	Article	IF	CITATIONS
451	Computational fluid dynamicsâ€based optimization of dimpled steam cracking reactors for reduced <scp>CO₂</scp> emissions. AICHE Journal, 2020, 66, e16255.	1.8	7
452	A Boudart Number for the Assessment of Irreducible Pellet-Scale Mass Transfer Limitations: Application to Oxidative Coupling of Methane. Industrial & Engineering Chemistry Research, 2021, 60, 6538-6553.	1.8	7
453	Structural stability of kinetic models: Anomalies due to irreversible adsorption. AICHE Journal, 1998, 44, 937-942.	1.8	6
454	Simulation of the decoking of an ethane cracker with a steam/air mixture. Chemical Engineering Science, 2006, 61, 1779-1789.	1.9	6
455	Modeling of Toluene Acetylation with Acetic Anhydride on H-USY Zeolite. Industrial & Engineering Chemistry Research, 2011, 50, 11822-11832.	1.8	6
456	Tuning Polymer Properties through Competitive Processes. ACS Symposium Series, 2012, , 145-169.	0.5	6
457	Understanding and optimization of chemical reactor performance for bimodal reaction sequences. AICHE Journal, 2017, 63, 111-119.	1.8	6
458	Gateway analysis for complex reaction mechanisms: Kinetic Informative Detachable (KID) sub-mechanisms. Chemical Engineering Science, 2018, 178, 183-193.	1.9	6
459	Modeling of thermodynamics of substituted toluene derivatives and benzylic radicals <i>via</i> group additivity. AICHE Journal, 2018, 64, 3649-3661.	1.8	6
460	Operational range of a Gas-Solid Vortex Unit. Powder Technology, 2018, 338, 702-715.	2.1	6
461	Formation and Functioning of Bimetallic Nanocatalysts: The Power of Xâ€ray Probes. Angewandte Chemie, 2019, 131, 13354-13364.	1.6	6
462	First-Principles-Based Simulation of an Industrial Ethanol Dehydration Reactor. Catalysts, 2019, 9, 921.	1.6	6
463	Alumina-based Coating for Coke Reduction in Steam Crackers. Materials, 2020, 13, 2025.	1.3	6
464	Impact of the Spatial Distribution of Active Material on Bifunctional Hydrocracking. Industrial & Engineering Chemistry Research, 2021, 60, 6357-6378.	1.8	6
465	Decarbonisation of steel mill gases in an energy-neutral chemical looping process. Energy Conversion and Management, 2022, 254, 115248.	4.4	6
466	Precise kinetic measurements and spatial uniformity of catalytic beds. Chemical Engineering Science, 2015, 134, 367-373.	1.9	5
467	Threeâ€component solids velocity measurements in the outlet section of a riser. AICHE Journal, 2016, 62, 3575-3584.	1.8	5
468	A Single-Event Microkinetic model for ethylene hydroformylation to propanal on Rh and Co based catalysts. Applied Catalysis A: General, 2016, 524, 32-44.	2.2	5

#	Article	IF	CITATIONS
469	Exploring Microemulsion-Prepared Lanthanum Catalysts for Natural Gas Valorisation. Johnson Matthey Technology Review, 2019, 63, 265-276.	0.5	5
470	How Does the Surface Structure of Ni-Fe Nanoalloys Control Carbon Formation During Methane Steam/Dry Reforming?. , 2019, , 177-225.		5
471	Single-Route Linear Catalytic Mechanism: A New, Kinetico-Thermodynamic Form of the Complex Reaction Rate. Symmetry, 2020, 12, 1748.	1.1	5
472	New Invariant Expressions in Chemical Kinetics. Entropy, 2020, 22, 373.	1.1	5
473	From catalyst to process: bridging the scales in modeling the OCM reaction. Catalysis Today, 2021, 365, 35-45.	2.2	5
474	Bond additivity corrections for CBSâ€QB3 calculated standard enthalpies of formation of H, C, O, N, and S containing species. International Journal of Chemical Kinetics, 2021, 53, 345-355.	1.0	5
475	New Perspectives into Cellulose Fast Pyrolysis Kinetics Using a Py-GC × GC-FID/MS System. ACS Engineering Au, 2022, 2, 320-332.	2.3	5
476	Development of an Active and Mechanically Stable Catalyst for the Oxidative Coupling of Methane in a Gas–Solid Vortex Reactor. Industrial & Engineering Chemistry Research, 2022, 61, 7748-7759.	1.8	5
477	Temporal Analysis of Products Reactor as a Complementary Tool to Study the Mechanism of Some Green Catalytic Reactions. Journal of Chemical Engineering of Japan, 2009, 42, S219-S225.	0.3	4
478	Deduction of connectivity features of pseudomonomolecular reaction networks from thin-zone-TAP-data. Chemical Engineering Science, 2012, 83, 39-49.	1.9	4
479	When the final catalyst activity profile depends only on the total amount of admitted substance: Theoretical proof. AICHE Journal, 2015, 61, 31-34.	1.8	4
480	Swapping the equilibrium. Chemical Engineering Science, 2019, 205, 165-173.	1.9	4
481	Comparison of jet loop and trickle-bed reactor performance in large-scale exploitation of glucose reductive aminolysis. Catalysis Today, 2022, 387, 119-127.	2.2	4
482	Selective etherification of \hat{l}^2 -citronellene catalyzed by zeolite beta. Green Chemistry, 2015, 17, 2840-2845.	4.6	3
483	Joint kinetics: a new paradigm for chemical kinetics and chemical engineering. Current Opinion in Chemical Engineering, 2020, 29, 83-88.	3.8	3
484	Reactor Engineering Aspects of the Lateral Flow Reactor. Industrial & Engineering Chemistry Research, 2020, 59, 11157-11169.	1.8	3
485	Heterogeneously catalyzed reactions in the presence of irreducible transport phenomena. Applied Catalysis A: General, 1999, 187, 1.	2.2	2
486	Synthesis of MTT zeolite catalysts with surface Al depletion. Studies in Surface Science and Catalysis, 2006, 162, 873-880.	1.5	2

#	Article	IF	CITATIONS
487	Assessment of filtered gas–solid momentum transfer models via a linear wave propagation speed test. International Journal of Multiphase Flow, 2007, 33, 616-637.	1.6	2
488	Computational Fluid Dynamic Design of Jet Stirred Reactors for Measuring Intrinsic Kinetics of Gasâ€Phase and Gasâ€Solid Reactions. International Journal of Chemical Kinetics, 2016, 48, 556-569.	1.0	2
489	Kinetics of Lifetime Changes in Bimetallic Nanocatalysts Revealed by Quick Xâ€ray Absorption Spectroscopy. Angewandte Chemie, 2018, 130, 12610-12614.	1.6	2
490	Productivity Enhancement for the Oxidative Coupling of Methane in Adiabatic Layered-Bed Reactors. ACS Engineering Au, 2021, 1, 85-95.	2.3	2
491	Steam Cracking Coke Properties and Their Influence on Furnace Run Length Predictions: Experimental and Modeling Study. Industrial & Engineering Chemistry Research, 2020, 59, 22460-22472.	1.8	2
492	Egalitarian Kinetic Models: Concepts and Results. Energies, 2021, 14, 7230.	1.6	2
493	Upcycling the carbon emissions from the steel industry into chemicals using three metal oxide loops. Energy Advances, 2022, 1, 367-384.	1.4	2
494	Electrified temperature-modulated synthesis. , 2022, 1, 512-513.		2
495	Reply to Comments on "Kinetic Modeling of Coke Formation during Steam Cracking― Industrial & Engineering Chemistry Research, 2002, 41, 6213-6214.	1.8	1
496	Optimization of Multizone Configurations. , 2017, , 267-284.		1
497	Trimetallic Catalyst Configuration for Syngas Production. ChemCatChem, 0, , .	1.8	1
498	Shadowing Effect in Catalyst Activity: Experimental Observation. ACS Catalysis, 2022, 12, 5455-5463.	5.5	1
499	Accuracy and convergence rate of steady-state simulation of one-dimensional, reactive gas flow with molar expansion. Computers and Chemical Engineering, 2011, 35, 1020-1037.	2.0	0
500	Editorial Overview: Time, Complexity, and Chemical Engineering. Current Opinion in Chemical Engineering, 2018, 21, iv-v.	3.8	0
501	From 3D to 1D: Capturing the effect of particle clusters in downers in the fluid catalytic cracking of gasoil. Chemical Engineering Research and Design, 2021, 170, 366-379.	2.7	0
502	Aligning time-resolved kinetics (TAP) and surface spectroscopy (AP-XPS) for a more comprehensive understanding of ALD-derived 2D and 3D model catalysts Faraday Discussions, 2022, , .	1.6	0