
Fang Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/561784/publications.pdf Version: 2024-02-01

FANCLUO

#	Article	IF	CITATIONS
1	Inter-clusters synergy in iron-organic frameworks for efficient CO2 photoreduction. Applied Catalysis B: Environmental, 2022, 300, 120487.	20.2	34
2	Separable magnetic MoS2@Fe3O4 nanocomposites with multi-exposed active edge facets toward enhanced adsorption and catalytic activities. Journal of Materials Science, 2021, 56, 5015-5030.	3.7	10
3	Eu(III) complex coated carbon sphere core-shell material for fluorescence detection, catalytic reduction and real-time monitoring of nitrophenol compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126137.	4.7	2
4	Calcined ZnTi‣ayered Double Hydroxide Intercalated with H ₃ PW ₁₂ O ₄₀ with Efficiently Photocatalytic and Adsorption Performances. Chemistry - A European Journal, 2021, 27, 16670-16681.	3.3	8
5	N-doped graphene-based CuO/WO3/Cu composite material with performances of catalytic decomposition 4-nitrophenol and photocatalytic degradation of organic dyes. Inorganic Chemistry Communication, 2020, 121, 108246.	3.9	9
6	Green synthesis of Ag/TiO ₂ composite coated porous vanadophosphates with enhanced visible-light photo-degradation and catalytic reduction performance for removing organic dyes. Dalton Transactions, 2020, 49, 7920-7931.	3.3	10
7	A nanohybrid self-assembled from exfoliated layered vanadium oxide nanosheets and Keggin Al ₁₃ for selective catalytic oxidation of alcohols. Dalton Transactions, 2020, 49, 2559-2569.	3.3	13
8	Enhancing catalytic aerobic oxidation performance of cyclohexane <i>via</i> size regulation of mixed-valence {V ₁₆ } cluster-based metal–organic frameworks. New Journal of Chemistry, 2019, 43, 14527-14535.	2.8	21
9	Facile one-pot construction of Polyoxometalate-based lanthanide-amino acid coordination polymers for proton conduction. Inorganic Chemistry Communication, 2019, 105, 147-150.	3.9	7
10	One-Step Template-Free Fabrication of Ultrathin Mixed-Valence Polyoxovanadate-Incorporated Metal–Organic Framework Nanosheets for Highly Efficient Selective Oxidation Catalysis in Air. ACS Applied Materials & Interfaces, 2019, 11, 12786-12796.	8.0	43
11	A gel-like/freeze-drying strategy to construct hierarchically porous polyoxometalate-based metal–organic framework catalysts. Journal of Materials Chemistry A, 2018, 6, 4678-4685.	10.3	30
12	A Nanocrystalline POM@MOFs Catalyst for the Degradation of Phenol: Effective Cooperative Catalysis by Metal Nodes and POM Guests. Chemistry - A European Journal, 2018, 24, 3045-3051.	3.3	78
13	Recognition of trace organic pollutant and toxic metal ions <i>via</i> a tailored fluorescent metal–organic coordination polymer in water environment. RSC Advances, 2018, 8, 34712-34717.	3.6	5
14	An alkaline metal–organic framework on white-light emission by two routes of ion–exchange with lanthanide metal ions. Inorganic Chemistry Communication, 2018, 96, 43-46.	3.9	2
15	Lewis-Basic Lanthanide Metal-Organic Framework-Derived Versatile Multi-Active-Site Synergistic Catalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2018, 10, 22023-22030.	8.0	39
16	Aminated Graphene Oxide Impregnated with Photocatalytic Polyoxometalate for Efficient Adsorption of Dye Pollutants and Its Facile and Complete Photoregeneration. Small, 2017, 13, 1603174.	10.0	37
17	Controllable proton-conducting pathways via situating polyoxometalates in targeting pores of a metal–organic framework. Journal of Materials Chemistry A, 2017, 5, 9611-9617.	10.3	61
18	An UV equipped box for photoactivation with a fluorescent coordination polymer for recognizing amine gases by "turn-color―in air. Sensors and Actuators B: Chemical, 2017, 247, 238-244.	7.8	9

Fang Luo

#	Article	IF	CITATIONS
19	Polyoxometalateâ€Modified Sponge‣ike Graphene Oxide Monolith with High Proton onducting Performance. Advanced Functional Materials, 2015, 25, 4480-4485.	14.9	96
20	White-light emission by selectively encapsulating single lanthanide metal ions into alkaline earth metal-organic coordination polymers. Dyes and Pigments, 2015, 122, 317-323.	3.7	22
21	Crystal Facets Make a Profound Difference in Polyoxometalate-Containing Metal–Organic Frameworks as Catalysts for Biodiesel Production. Journal of the American Chemical Society, 2015, 137, 12697-12703.	13.7	160
22	Ultra-deep desulfurization via reactive adsorption on peroxophosphomolybdate/agarose hybrids. Chemosphere, 2014, 111, 631-637.	8.2	14
23	One-pot twelve tungsten phosphate acid assisted electrochemical synthesis of WO3-decorated graphene sheets for high-efficiency UV-light-driven photocatalysis. Chemical Physics Letters, 2014, 607, 34-38.	2.6	21
24	Coating graphene oxide sheets with luminescent rare-earth complexes. Journal of Materials Science, 2013, 48, 805-811.	3.7	35
25	Kinetics, Equilibrium, and Thermodynamic of Pb(II) Biosorption by Citric Acid Modified Lawny Grass Containing Cyanex272. Separation Science and Technology, 2012, 47, 1552-1561.	2.5	3
26	One-step molybdate ion assisted electrochemical synthesis of α-MoO3-decorated graphene sheets and its potential applications. Journal of Materials Chemistry, 2011, 21, 15009.	6.7	50
27	Kinetics and Equilibria of Cd(II) Adsorption onto a Chemically Modified Lawny Grass with H[BTMPP]. Journal of Chemical & Engineering Data, 2011, 56, 1059-1068.	1.9	23
28	Biosorption of Methylene Blue from Aqueous Solution Using Lawny Grass Modified with Citric Acid. Journal of Chemical & Engineering Data, 2011, 56, 3392-3399.	1.9	59
29	Synthesis and characterization of two inorganic–organic hybrid polyoxometalates bridged by Keggin-type building blocks and copper(II) organonitrogen complexes. Transition Metal Chemistry, 2011, 36, 125-130.	1.4	1
30	Removal of lead (II) from aqueous solution by a new biosorption material by immobilizing Cyanex272 in cornstalks. Desalination, 2011, 265, 177-183.	8.2	28
31	The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. Journal of Hazardous Materials, 2010, 183, 923-930.	12.4	362
32	Removal of Cd(II) by modified lawny grass cellulose adsorbent. Desalination, 2010, 259, 120-130.	8.2	26
33	Synthesis, Structure, and Magnetic Properties of Three Novel Sandwichâ€ŧype Tungstobismuthates with Triethanolamine. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 1991-1997.	1.2	10
34	Equilibrium and Kinetic Modeling of Pb(II) Biosorption by a Chemically Modified Orange Peel Containing Cyanex 272. Journal of Chemical & Engineering Data, 2010, 55, 4147-4153.	1.9	31
35	Two organic–inorganic hybrid frameworks with helical structures and large cavities constructed from poly(oxomolybdophosphates). CrystEngComm, 2010, 12, 977-982.	2.6	16
36	Non-hydrothermal Synthesis of a Complex {[Zn(phen)2]2(γ-Mo8O26)} Constructed from [γ-Mo8O26]4– Anions. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2009, 64, 395-398.	0.7	0

Fang Luo

#	Article	IF	CITATIONS
37	Synthesis and Crystal Structure of a Sandwich-type Transition Metal Complex with Tungstobismutate and Triethanolamine. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2009, 64, 821-825.	0.7	3
38	Kinetics and equilibrium of Cu(II) adsorption onto chemically modified orange peel cellulose biosorbents. Hydrometallurgy, 2009, 95, 145-152.	4.3	95
39	Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. Journal of Hazardous Materials, 2009, 163, 931-938.	12.4	135
40	Removal of Pb(II) using the modified lawny grass: Mechanism, kinetics, equilibrium and thermodynamic studies. Journal of Hazardous Materials, 2009, 166, 239-247.	12.4	71
41	Synthesis and Crystal Structure of a New 3D Copper B-Paradodecatungstate Compound: [Na2(H2O)8][Na8(H2O)20][Cu(en)2][W12O42] · 3H2O. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2009, 64, 269-273.	0.7	8
42	Oneâ€Step Ionicâ€Liquidâ€Assisted Electrochemical Synthesis of Ionicâ€Liquidâ€Functionalized Graphene Sheets Directly from Graphite. Advanced Functional Materials, 2008, 18, 1518-1525.	14.9	945
43	Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 512-521.	4.7	174
44	Adsorption of arsenate and arsenite anions from aqueous medium by using metal(III)-loaded amberlite resins. Hydrometallurgy, 2008, 91, 138-143.	4.3	57
45	Controllable synthesis of metal hydroxide and oxide nanostructures by ionic liquids assisted electrochemical corrosion method. Solid State Sciences, 2008, 10, 1049-1055.	3.2	21
46	Synthesis and Crystal Structure of the Bimetallic Complex [Fe(phen) ₃] ₂ [phen][V ₄ O ₁₂]·19H ₂ O. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 1352-1356.	0.7	2
47	Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution. Separation and Purification Technology, 2007, 55, 69-75.	7.9	129
48	The preparation of sol–gel materials doped with ionic liquids and trialkyl phosphine oxides for Yttrium(III) uptake. Analytica Chimica Acta, 2007, 604, 107-113.	5.4	59
49	One-Dimensional Helical Chain Based on Decatungstate and Cerium Organicâ `Inorganic Hybrid Material. Crystal Growth and Design, 2006, 6, 2658-2660.	3.0	36
50	Biosorption of lead ion by chemically-modified biomass of marine brown algae Laminaria japonica. Chemosphere, 2006, 64, 1122-1127.	8.2	105
51	Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto pretreated chemically modified orange peel. Biochemical Engineering Journal, 2006, 31, 160-164.	3.6	115
52	Porphyrin Functionalized Laser-Induced Graphene and Porous WO3 Assembled Effective Z-Scheme Photocatalyst for Promoted Visible-Light-Driven Degradation of Ciprofloxacin. Catalysis Letters, 0, , 1.	2.6	2