List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5617747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of petrographic composition and chemistry of aggregate on the local and general fracture response of cementitious composites. Frattura Ed Integrita Strutturale, 2022, 16, 13-29.	0.5	2
2	Effects of accelerated carbonation on properties of ceramic-based geopolymers. Journal of Thermal Analysis and Calorimetry, 2021, 145, 2951-2966.	2.0	1
3	Fresh state properties of spongilite blended cement pastes. AIP Conference Proceedings, 2021, , .	0.3	3
4	Fracture parameters of alkali-activated aluminosilicate composites with ceramic precursor: durability aspects. Procedia Structural Integrity, 2021, 33, 207-214.	0.3	1
5	Alkaline activation of low-reactivity ceramics: Peculiarities induced by the precursors' dual character. Cement and Concrete Composites, 2020, 105, 103440.	4.6	14
6	Non-hydrophobized perlite renders for repair and thermal insulation purposes: Influence of different binders on their properties and durability. Construction and Building Materials, 2020, 263, 120617.	3.2	32
7	Fracture Parameters of Alkali-Activated Aluminosilicate Composites with Ceramic Precursor. Solid State Phenomena, 2020, 309, 73-79.	0.3	2
8	Microstructure of biopolymer-modified aerial lime mortars. MATEC Web of Conferences, 2020, 322, 01023.	0.1	1
9	Characterization of ceramic-based alkali activated aluminosilicate composites. AIP Conference Proceedings, 2020, , .	0.3	1
10	Characterization of geopolymers prepared using powdered brick. Journal of Materials Research and Technology, 2019, 8, 6253-6261.	2.6	39
11	Fracture Parameters of Concrete from Drill-Core Specimens from Objects at the Transgas Gas Control Center. Solid State Phenomena, 2019, 292, 85-90.	0.3	0
12	Highâ€strength concrete based on ternary binder with high pozzolan content. Structural Concrete, 2018, 19, 1258-1267.	1.5	17
13	Red-clay ceramic powders as geopolymer precursors: Consideration of amorphous portion and CaO content. Applied Clay Science, 2018, 161, 82-89.	2.6	58
14	Introduction to an Approach to Performing Sustainability Quantification of Concrete Structures. Solid State Phenomena, 2018, 272, 273-279.	0.3	4
15	Effect of Curing Temperature on Mechanical and Fracture Parameters of Alkali-Activated Brick Powder Based Composite. Key Engineering Materials, 2018, 761, 79-82.	0.4	1
16	Properties of Aerial Lime-Based Mortars with Chitosan Ethers. Solid State Phenomena, 2018, 276, 75-82.	0.3	5
17	Thermal and hygric properties of alkali activated aluminosilicates. AIP Conference Proceedings, 2018, ,	0.3	0
18	Methodology for the quantification of concrete sustainability. MATEC Web of Conferences, 2018, 174, 01006.	0.1	3

#	Article	IF	CITATIONS
19	Rheological properties and microstructure of binary waste red brick powder/metakaolin geopolymer. Construction and Building Materials, 2018, 188, 924-933.	3.2	108
20	Thermal Analysis of Concrete from Panels Subjected to Fire Experiments. Solid State Phenomena, 2018, 272, 47-52.	0.3	4
21	Application of waste brick powder in alkali activated aluminosilicates: Functional and environmental aspects. Journal of Cleaner Production, 2018, 194, 714-725.	4.6	140
22	Rheological Properties of Alkali-Activated Brick Powder Based Pastes: Effect of Alkali Activator and Silicate Modulus. Solid State Phenomena, 2018, 276, 185-191.	0.3	6
23	Lime-based plasters with combined expanded clay-silica aggregate: Microstructure, texture and engineering properties. Cement and Concrete Composites, 2017, 83, 374-383.	4.6	27
24	The use of glass powder as a partial Portland cement replacement. AIP Conference Proceedings, 2017, , .	0.3	2
25	Effect of the preparation of lime putties on their properties. Scientific Reports, 2017, 7, 17260.	1.6	15
26	Mechanical Fracture Parameters of Cement Based Mortars with Waste Glass Powder. Procedia Engineering, 2017, 190, 86-91.	1.2	12
27	Improvement of properties of aluminosilicate pastes based on optimization of curing parameters. AIP Conference Proceedings, 2017, , .	0.3	0
28	MICROSTRUCTURE, TEXTURE, AND MECHANICAL PROPERTIES OF GEOPOLYMERS PREPARED USING INDUSTRIAL WASTE. Proceedings of International Structural Engineering and Construction, 2017, 4, .	0.1	0
29	Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars. Construction and Building Materials, 2016, 120, 530-539.	3.2	145
30	Blended Alkali-activated Fly Ash / Brick Powder Materials. Procedia Engineering, 2016, 151, 108-113.	1.2	48
31	Study of the Effect of Diatomite as a Partial Replacement of Cement in Cement Pastes. Materials Science Forum, 2016, 865, 22-26.	0.3	2
32	Mechanical, durability and hygrothermal properties of concrete produced using Portland cement-ceramic powder blends. Structural Concrete, 2016, 17, 105-115.	1.5	49
33	Coagulated silica - a-SiO2 admixture in cement paste. AIP Conference Proceedings, 2016, , .	0.3	6
34	Influence of various amount of diatomaceous earth used as cement substitute on mechanical properties of cement paste. AIP Conference Proceedings, 2016, , .	0.3	6
35	Engineering properties of composite materials containing waste ceramic dust from advanced hollow brick production as a partial replacement of Portland cement. Journal of Building Physics, 2016, 40, 17-34.	1.2	9
36	Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance. Cement and Concrete Composites, 2015, 55, 259-267.	4.6	124

#	Article	IF	CITATIONS
37	Reactivity of Brick Powder in Lime Mortars. Advanced Materials Research, 2014, 897, 135-138.	0.3	3
38	Physico-mechanical and microstructural properties of rehydrated blended cement pastes. Construction and Building Materials, 2014, 54, 413-420.	3.2	47
39	Characterization of alkali activated slag paste after exposure to high temperatures. Construction and Building Materials, 2013, 47, 1479-1487.	3.2	153
40	Investigation of the Causes of Colour Inconsistency in the Facades of Vrchotovy Janovice Castle. Advanced Materials Research, 2013, 688, 45-52.	0.3	0
41	Properties of lime composites containing a new type of pozzolana for the improvement of strength and durability. Composites Part B: Engineering, 2012, 43, 3534-3540.	5.9	31
42	Properties of high performance concrete containing fine-ground ceramics as supplementary cementitious material. Cement and Concrete Composites, 2012, 34, 55-61.	4.6	115
43	Application of burnt clay shale as pozzolan addition to lime mortar. Cement and Concrete Composites, 2012, 34, 486-492.	4.6	51
44	Mechanical, fracture-mechanical, hydric, thermal, and durability properties of lime–metakaolin plasters for renovation of historical buildings. Construction and Building Materials, 2012, 31, 22-28.	3.2	84
45	High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics. Construction and Building Materials, 2010, 24, 1404-1411.	3.2	126
46	Modeling of Chloride Concentration Effect on Reinforcement Corrosion. Computer-Aided Civil and Infrastructure Engineering, 2009, 24, 446-458.	6.3	46
47	High performance concrete containing lower slag amount: A complex view of mechanical and durability properties. Construction and Building Materials, 2009, 23, 2237-2245.	3.2	61
48	Flue gas desulfurization gypsum: Study of basic mechanical, hydric and thermal properties. Construction and Building Materials, 2007, 21, 1500-1509.	3.2	105
49	Effect of thermal decomposition processes on the thermal properties of carbon fiber reinforced cement composites in high-temperature range. Journal of Thermal Analysis and Calorimetry, 2007, 90, 475-488.	2.0	16
50	Effect of pozzolanic admixtures on mechanical, thermal and hygric properties of lime plasters. Construction and Building Materials, 2006, 20, 849-857.	3.2	86
51	Thermal and Hygric Parameters of Carbon-fiber-reinforced Cement Composites after Thermal and Mechanical Loading. Journal of Building Physics, 2005, 29, 121-143.	1.2	7
52	Effect of Admixture Dosage and Specimens Age on Mechanical Fracture Parameters of Lime Mortars Enhanced by Burnt Clays. Advanced Materials Research, 0, 1000, 356-359.	0.3	0
53	Probabilistic Modelling and the <i>k</i> -Value Concept. Key Engineering Materials, 0, 635, 198-203.	0.4	1
54	Mechanical Fracture Parameters of Mortars Modified by Burnt Clays. Advanced Materials Research, 0, 969, 241-244.	0.3	0

#	Article	IF	CITATIONS
55	Mechanical Fracture Parameters of Fine-Grain Concretes with Zeolite: Effect of Composition and Origin of Cements. Advanced Materials Research, 0, 1000, 330-333.	0.3	0
56	Effect of Cement Replacement by Zeolite on the Basic Mechanical Fracture Properties of Concrete: A Parametric Study. Advanced Materials Research, 0, 969, 140-143.	0.3	3
57	Properties of Concretes with Admixture of Natural Zeolite. Advanced Materials Research, 0, 1000, 106-109.	0.3	3
58	Effect of Porosity on Mechanical and Hygric Properties of Concrete with Natural Pozzolan Addition. Advanced Materials Research, 0, 982, 22-26.	0.3	1
59	Properties of Concrete with Lower Amount of SCM. Materials Science Forum, 0, 824, 65-69.	0.3	0
60	Application of a-SiO ₂ Rich Additives in Cement Paste. Applied Mechanics and Materials, 0, 749, 362-367.	0.2	7
61	A Study of Crushed Glass as a Replacement for Cement in Cement Pastes. Key Engineering Materials, 0, 714, 86-89.	0.4	0
62	Effect of Amorphous Silicon Dioxide Amount on the Mechanical Fracture Parameters of Cement Mortars. Solid State Phenomena, 0, 249, 147-151.	0.3	0
63	Properties of Cement Paste with Incorporated Sodium Silicate. Key Engineering Materials, 0, 677, 133-137.	0.4	2
64	Influence of Guar Gum Derivatives on Hardened Properties of Aerial Lime-Based Mortars. Key Engineering Materials, 0, 760, 22-29.	0.4	5
65	Use of Lava Sand as an Alternative to Standard Quartz Aggregate in Lime Mortars. Solid State Phenomena, 0, 296, 73-78.	0.3	2
66	Identification of AAAS Composites Mechanical Fracture Parameters. Solid State Phenomena, 0, 322, 66-71.	0.3	1
67	X-RAY MICRO-TOMOGRAPHY CHARACTERIZATION OF VOIDS CAUSED BY THREE-POINT BENDING IN SELECTED ALKALI-ACTIVATED ALUMINOSILICATE COMPOSITE. Acta Polytechnica CTU Proceedings, 0, 25, 58-63.	0.3	2