Anders Haug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/561770/publications.pdf

Version: 2024-02-01

		430874	3	395702
58	1,264	18		33
papers	citations	h-index		g-index
F.O.	F.O.	F.O.		725
59	59	59		735
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The impact of information technology on product innovation in SMEs: The role of technological orientation. Journal of Small Business Management, 2023, 61, 384-410.	4.8	23
2	Implementation of digital twins in the process industry: A systematic literature review of enablers and barriers. Computers in Industry, 2022, 134, 103558.	9.9	91
3	When reverse supply chain makes financial sense: a study of factors affecting profitability in reverse supply chains. International Journal of Sustainable Engineering, 2022, 15, 35-46.	3.5	1
4	A procedure for reducing stock–keeping unit variety by linking internal and external product variety. CIRP Journal of Manufacturing Science and Technology, 2022, 37, 344-358.	4.5	0
5	An approach for the development and implementation of commissioning service configurators in engineer-to-order companies. Computers in Industry, 2022, 142, 103717.	9.9	1
6	The moderating effect of ERP system complexity on the growth–profitability relationship in young SMEs. Journal of Small Business Management, 2021, 59, 601-626.	4.8	10
7	Motivations and challenges with the diffusion of additive manufacturing through a non-profit association. Journal of Manufacturing Technology Management, 2021, 32, 841-861.	6.4	10
8	Complexity management in project organisations. Production Engineering, 2021, 15, 361-370.	2.3	2
9	The costs and benefits of multistage configuration: A framework and case study. Computers and Industrial Engineering, 2021, 153, 107095.	6.3	10
10	Identifying variety-induced complexity cost factors in manufacturing companies and their impact on product profitability. Journal of Manufacturing Systems, 2021, 60, 373-391.	13.9	6
11	Understanding the differences across data quality classifications: a literature review and guidelines for future research. Industrial Management and Data Systems, 2021, 121, 2651-2671.	3.7	13
12	A classification of barriers to product variety reduction. CIRP Journal of Manufacturing Science and Technology, 2021, 35, 517-525.	4.5	3
13	Implementation of product information management systems: Identifying the challenges of the scoping phase. Computers in Industry, 2021, 133, 103533.	9.9	3
14	Drivers and barriers for Industry 4.0 readiness and practice: empirical evidence from small and medium-sized manufacturers. Production Planning and Control, 2021, 32, 811-828.	8.8	203
15	The reduction of product and process complexity based on the quantification of product complexity costs. International Journal of Production Research, 2020, 58, 350-366.	7.5	23
16	Why slow down? Factors affecting speed loss in process manufacturing. International Journal of Advanced Manufacturing Technology, 2020, 106, 2021-2034.	3.0	4
17	Application of design thinking to product-configuration projects. Journal of Manufacturing Technology Management, 2020, 32, 219-241.	6.4	14
18	Cost-driven motives to relocate manufacturing abroad among small- and medium-sized manufacturers. Journal of Manufacturing Technology Management, 2020, 32, 646-666.	6.4	7

#	Article	IF	CITATIONS
19	The causes of product configuration project failure. Computers in Industry, 2019, 108, 121-131.	9.9	20
20	Psychologically Durable Design – Definitions and Approaches. Design Journal, 2019, 22, 143-167.	0.8	3
21	The costs and benefits of product configuration projects in engineer-to-order companies. Computers in Industry, 2019, 105, 133-142.	9.9	23
22	Acquiring materials knowledge in design education. International Journal of Technology and Design Education, 2019, 29, 405-420.	2.6	17
23	Uncertainties in socially responsible design: a consequentialist approach. International Journal of Sustainable Design, 2019, 3, 137.	0.0	0
24	Complementing the Scoping Process of Configuration Projects by Design Thinking. Advances in Transdisciplinary Engineering, 2019, , .	0.1	1
25	Development of a Design-Time Estimation Model for Complex Engineering Processes. Advances in Transdisciplinary Engineering, 2019, , .	0.1	2
26	Defining â€~Resilient Design' in the Context of Consumer Products. Design Journal, 2018, 21, 15-36.	0.8	14
27	Educating ethical designers. International Journal of Technology and Design Education, 2017, 27, 655-665.	2.6	11
28	The documentation of product configuration systems: A framework and an IT solution. Advanced Engineering Informatics, 2017, 32, 163-175.	8.0	31
29	Management of constraint generators in fashion store design processes. International Journal of Retail and Distribution Management, 2017, 45, 122-142.	4.7	5
30	Including product features in process redesign. Concurrent Engineering Research and Applications, 2017, 25, 343-359.	3.2	3
31	A framework for determining product modularity levels. Advances in Mechanical Engineering, 2017, 9, 168781401771942.	1.6	18
32	The Role of Product Meeting Form in Product Experience. Design Journal, 2016, 19, 383-403.	0.8	3
33	A Framework for the Experience of Product Aesthetics. Design Journal, 2016, 19, 809-826.	0.8	8
34	Towards an Ethical Fashion Framework. Fashion Theory, 2016, 20, 317-339.	0.8	24
35	Design variables and constraints in fashion store design processes. International Journal of Retail and Distribution Management, 2015, 43, 831-848.	4.7	18
36	Four dimensions of product designs. Journal of Design Research, 2015, 13, 20.	0.1	3

#	Article	IF	CITATIONS
37	Emergence patterns for client design requirements. Design Studies, 2015, 39, 48-69.	3.1	16
38	Work instruction quality in industrial management. International Journal of Industrial Ergonomics, 2015, 50, 170-177.	2.6	19
39	Improving the design phase through interorganisational product knowledge models. International Journal of Production Research, 2013, 51, 626-639.	7.5	29
40	Master data quality barriers: an empirical investigation. Industrial Management and Data Systems, 2013, 113, 234-249.	3.7	26
41	Reducing variety in product solution spaces of engineer-to-order companies: the case of Novenco A/S. International Journal of Product Development, 2013, 18, 531.	0.2	16
42	The illusion of tacit knowledge as the great problem in the development of product configurators. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2012, 26, 25-37.	1.1	8
43	The implementation of enterprise content management systems in SMEs. Journal of Enterprise Information Management, 2012, 25, 349-372.	7.5	26
44	Definition and evaluation of product configurator development strategies. Computers in Industry, 2012, 63, 471-481.	9.9	55
45	IT readiness in small and mediumâ€sized enterprises. Industrial Management and Data Systems, 2011, 111, 490-508.	3.7	49
46	Barriers to master data quality. Journal of Enterprise Information Management, 2011, 24, 288-303.	7.5	67
47	The impact of product configurators on lead times in engineering-oriented companies. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2011, 25, 197-206.	1.1	35
48	The costs of poor data quality. Journal of Industrial Engineering and Management, 2011, 4, .	1.5	81
49	A software system to support the development and maintenance of complex product configurators. International Journal of Advanced Manufacturing Technology, 2010, 49, 393-406.	3.0	18
50	Managing diagrammatic models with different perspectives on product information. Journal of Intelligent Manufacturing, 2010, 21, 811-822.	7.3	8
51	A layout technique for class diagrams to be used in product configuration projects. Computers in Industry, 2010, 61, 409-418.	9.9	19
52	ERP system strategies in parentâ€subsidiary supply chains. International Journal of Physical Distribution and Logistics Management, 2010, 40, 298-314.	7.4	12
53	From engineerâ€toâ€order to mass customization. Management Research Review, 2009, 32, 633-644.	0.7	74
54	A classification model of ERP system data quality. Industrial Management and Data Systems, 2009, 109, 1053-1068.	3.7	48

Anders Haug

#	Article	IF	CITATION
55	CRC cards to support the development and maintenance of product configuration systems. International Journal of Mass Customisation, 2009, 3, 38.	1.2	5
56	Key Success Factors for ICT-System Implementation in SME's., 2009,, 249-266.		4
57	The modelling techniques of a documentation system that supports the development and maintenance of product configuration systems. International Journal of Mass Customisation, 2007, 2, 1.	1.2	17
58	Identifying profitable reference architectures in an engineer-to-order context. International Journal of Production Research, 0 , 1 -15.	7.5	3