Yuntao Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5617683/publications.pdf

Version: 2024-02-01

28 1,596 21 28 g-index

31 31 31 31 2024

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Click-ExM enables expansion microscopy for all biomolecules. Nature Methods, 2021, 18, 107-113.	19.0	91
2	Identifying the origin of local flexibility in a carbohydrate polymer. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
3	Automated Assembly of Starch and Glycogen Polysaccharides. Journal of the American Chemical Society, 2021, 143, 9758-9768.	13.7	54
4	Targeted Chemical Modifications Identify Key Features of Carbohydrate Assemblies and Generate Tailored Carbohydrate Materials. Chemistry - A European Journal, 2021, 27, 13139-13143.	3.3	9
5	Exploring the Molecular Conformation Space by Soft Molecule–Surface Collision. Journal of the American Chemical Society, 2020, 142, 21420-21427.	13.7	41
6	Automated access to well-defined ionic oligosaccharides. Organic and Biomolecular Chemistry, 2020, 18, 1349-1353.	2.8	14
7	Systematic Hydrogenâ€Bond Manipulations To Establish Polysaccharide Structure–Property Correlations. Angewandte Chemie, 2019, 131, 13261-13266.	2.0	35
8	Systematic Hydrogenâ€Bond Manipulations To Establish Polysaccharide Structure–Property Correlations. Angewandte Chemie - International Edition, 2019, 58, 13127-13132.	13.8	76
9	9-Azido Analogues of Three Sialic Acid Forms for Metabolic Remodeling of Cell-Surface Sialoglycans. ACS Chemical Biology, 2019, 14, 2141-2147.	3.4	9
10	Carbohydrateâ€based nanomaterials for biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1558.	6.1	58
11	Traceless Photolabile Linker Expedites the Chemical Synthesis of Complex Oligosaccharides by Automated Glycan Assembly. Journal of the American Chemical Society, 2019, 141, 9079-9086.	13.7	41
12	Legionella effector SetA as a general O-glucosyltransferase for eukaryotic proteins. Nature Chemical Biology, 2019, 15, 213-216.	8.0	21
13	Rücktitelbild: Artificial Cysteine Sâ€Glycosylation Induced by Perâ€Oâ€Acetylated Unnatural Monosaccharides during Metabolic Glycan Labeling (Angew. Chem. 7/2018). Angewandte Chemie, 2018, 130, 2024-2024.	2.0	0
14	Artificial Cysteine Sâ€Glycosylation Induced by Perâ€Oâ€Acetylated Unnatural Monosaccharides during Metabolic Glycan Labeling. Angewandte Chemie, 2018, 130, 1835-1838.	2.0	27
15	Quantitative Profiling of Protein Carbonylations in Ferroptosis by an Aniline-Derived Probe. Journal of the American Chemical Society, 2018, 140, 4712-4720.	13.7	139
16	Artificial Cysteine Sâ€Glycosylation Induced by Perâ€Oâ€Acetylated Unnatural Monosaccharides during Metabolic Glycan Labeling. Angewandte Chemie - International Edition, 2018, 57, 1817-1820.	13.8	148
17	Quantitative Profiling of Protein O-GlcNAcylation Sites by an Isotope-Tagged Cleavable Linker. ACS Chemical Biology, 2018, 13, 1983-1989.	3.4	7 3
18	Expanding the Scope of Metabolic Glycan Labeling in <i>Arabidopsis thaliana</i> . ChemBioChem, 2017, 18, 1286-1296.	2.6	24

#	Article	IF	CITATIONS
19	Quantitative time-resolved chemoproteomics reveals that stable $\langle i \rangle O \langle i \rangle$ -GlcNAc regulates box C/D snoRNP biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6749-E6758.	7.1	81
20	Selective Imaging of Gram-Negative and Gram-Positive Microbiotas in the Mouse Gut. Biochemistry, 2017, 56, 3889-3893.	2.5	65
21	Metabolic Labeling and Imaging of Nâ€Linked Glycans in <i>Arabidopsis Thaliana</i> . Angewandte Chemie - International Edition, 2016, 55, 9301-9305.	13.8	60
22	In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5173-5178.	7.1	122
23	Metabolic Labeling and Imaging of Nâ€Linked Glycans in <i>Arabidopsis Thaliana</i> . Angewandte Chemie, 2016, 128, 9447-9451.	2.0	21
24	Nitrilase-Activatable Noncanonical Amino Acid Precursors for Cell-Selective Metabolic Labeling of Proteomes. ACS Chemical Biology, 2016, 11, 3273-3277.	3.4	20
25	A Cis-Membrane FRET-Based Method for Protein-Specific Imaging of Cell-Surface Glycans. Journal of the American Chemical Society, 2014, 136, 679-687.	13.7	101
26	Liveâ€Cell Stimulated Raman Scattering Imaging of Alkyneâ€Tagged Biomolecules. Angewandte Chemie - International Edition, 2014, 53, 5827-5831.	13.8	169
27	Progress in the Synthesis of Sialic Acid Derivatives. Chinese Journal of Organic Chemistry, 2014, 34, 461.	1.3	3
28	Alendronate functionalized mesoporous hydroxyapatite nanoparticles for drug delivery. Materials Research Bulletin, 2013, 48, 2201-2204.	5.2	42