
Mehmet Gesoglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5617256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Properties of rubberized concretes containing silica fume. Cement and Concrete Research, 2004, 34, 2309-2317.	11.0	340
2	Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume. Construction and Building Materials, 2009, 23, 1847-1854.	7.2	294
3	Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Construction and Building Materials, 2012, 34, 120-130.	7.2	232
4	Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Materials and Structures/Materiaux Et Constructions, 2008, 41, 937-949.	3.1	219
5	Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash. Construction and Building Materials, 2012, 37, 160-170.	7.2	201
6	Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures. Construction and Building Materials, 2010, 24, 1878-1887.	7.2	164
7	Abrasion and freezing–thawing resistance of pervious concretes containing waste rubbers. Construction and Building Materials, 2014, 73, 19-24.	7.2	157
8	Investigating properties of pervious concretes containing waste tire rubbers. Construction and Building Materials, 2014, 63, 206-213.	7.2	147
9	Strength development and chloride penetration in rubberized concretes with and without silica fume. Materials and Structures/Materiaux Et Constructions, 2007, 40, 953-964.	3.1	141
10	Effect of surface treatment methods on the properties of self-compacting concrete with recycled aggregates. Construction and Building Materials, 2014, 64, 172-183.	7.2	141
11	A study on durability properties of high-performance concretes incorporating high replacement levels of slag. Materials and Structures/Materiaux Et Constructions, 2008, 41, 479-493.	3.1	127
12	Effects of mineral admixtures on fresh and hardened properties of self-compacting concretes: binary, ternary and quaternary systems. Materials and Structures/Materiaux Et Constructions, 2007, 40, 923-937.	3.1	122
13	Fresh and rheological behavior of nano-silica and fly ash blended self-compacting concrete. Construction and Building Materials, 2015, 95, 29-44.	7.2	114
14	Permeability properties of self-compacting rubberized concretes. Construction and Building Materials, 2011, 25, 3319-3326.	7.2	110
15	Properties of low binder ultra-high performance cementitious composites: Comparison of nanosilica and microsilica. Construction and Building Materials, 2016, 102, 706-713.	7.2	107
16	Shrinkage cracking of lightweight concrete made with cold-bonded fly ash aggregates. Cement and Concrete Research, 2004, 34, 1121-1130.	11.0	106
17	Failure characteristics of self-compacting concretes made with recycled aggregates. Construction and Building Materials, 2015, 98, 334-344.	7.2	101
18	Influence of waste rubber utilization on the fracture and steel–concrete bond strength properties of concrete. Construction and Building Materials, 2015, 101, 1113-1121.	7.2	99

Mehmet Gesoglu

#	Article	IF	CITATIONS
19	Properties of lightweight aggregates produced with cold-bonding pelletization of fly ash and ground granulated blast furnace slag. Materials and Structures/Materiaux Et Constructions, 2012, 45, 1535-1546.	3.1	96
20	Effects of fly ash properties on characteristics of cold-bonded fly ash lightweight aggregates. Construction and Building Materials, 2007, 21, 1869-1878.	7.2	93
21	Effect of different substitution of natural aggregate by recycled aggregate on performance characteristics of pervious concrete. Materials and Structures/Materiaux Et Constructions, 2016, 49, 521-536.	3.1	89
22	Properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and metakaolin. Materials and Structures/Materiaux Et Constructions, 2008, 41, 1519-1531.	3.1	87
23	Durability aspect of concretes composed of cold bonded and sintered fly ash lightweight aggregates. Composites Part B: Engineering, 2013, 53, 258-266.	12.0	86
24	Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete. Journal of Hazardous Materials, 2012, 235-236, 352-358.	12.4	82
25	A study on reinforcement corrosion and related properties of plain and blended cement concretes under different curing conditions. Cement and Concrete Composites, 2005, 27, 449-461.	10.7	81
26	Strength and permeability properties of self-compacting concrete with cold bonded fly ash lightweight aggregate. Construction and Building Materials, 2015, 74, 17-24.	7.2	79
27	Combined effect of steel fiber and metakaolin incorporation on mechanical properties of concrete. Composites Part B: Engineering, 2014, 56, 83-91.	12.0	78
28	Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin. Composites Part B: Engineering, 2013, 45, 1288-1295.	12.0	76
29	Strength development of concretes incorporated with metakaolin and different types of calcined kaolins. Construction and Building Materials, 2012, 37, 766-774.	7.2	70
30	Optimization of concrete mixture with hybrid blends of metakaolin and fly ash using response surface method. Composites Part B: Engineering, 2014, 60, 707-715.	12.0	70
31	Fracture behavior and mechanical properties of concrete with artificial lightweight aggregate and steel fiber. Construction and Building Materials, 2015, 84, 156-168.	7.2	70
32	Effect of steel fiber addition and aspect ratio on bond strength of cold-bonded fly ash lightweight aggregate concretes. Construction and Building Materials, 2013, 47, 358-365.	7.2	61
33	Effects of cold-bonded fly ash aggregate properties on the shrinkage cracking of lightweight concretes. Cement and Concrete Composites, 2006, 28, 598-605.	10.7	55
34	Effect of nano silica on the workability of self-compacting concretes having untreated and surface treated lightweight aggregates. Construction and Building Materials, 2016, 115, 371-380.	7.2	54
35	Effects of marble powder and slag on the properties of self compacting mortars. Materials and Structures/Materiaux Et Constructions, 2009, 42, 813-826.	3.1	48
36	Effect of silica fume and steel fiber on the mechanical properties of the concretes produced with cold bonded fly ash aggregates. Construction and Building Materials, 2013, 40, 982-990.	7.2	47

Mehmet Gesoglu

#	Article	IF	CITATIONS
37	Fresh properties of self-compacting cold bonded fly ash lightweight aggregate concrete with different mineral admixtures. Materials and Structures/Materiaux Et Constructions, 2012, 45, 1849-1859.	3.1	46
38	Self-consolidating characteristics of concrete composites including rounded fine and coarse fly ash lightweight aggregates. Composites Part B: Engineering, 2014, 60, 757-763.	12.0	44
39	Strength and transport properties of steam cured and water cured lightweight aggregate concretes. Construction and Building Materials, 2013, 49, 417-424.	7.2	43
40	Enhancement of shrinkage behavior of lightweight aggregate concretes by shrinkage reducing admixture and fiber reinforcement. Construction and Building Materials, 2014, 54, 91-98.	7.2	43
41	Estimation of chloride permeability of concretes by empirical modeling: Considering effects of cement type, curing condition and age. Construction and Building Materials, 2009, 23, 469-481.	7.2	42
42	Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming. Construction and Building Materials, 2008, 22, 1831-1840.	7.2	39
43	Utilization of cold bonded fly ash lightweight fine aggregates as a partial substitution of natural fine aggregate in self-compacting mortars. Construction and Building Materials, 2015, 74, 9-16.	7.2	38
44	Evaluating and forecasting the initial and final setting times of self-compacting concretes containing mineral admixtures by neural network. Materials and Structures/Materiaux Et Constructions, 2009, 42, 469-484.	3.1	37
45	Influence of steam curing on the properties of concretes incorporating metakaolin and silica fume. Materials and Structures/Materiaux Et Constructions, 2010, 43, 1123-1134.	3.1	37
46	Permeation characteristics of self compacting concrete made with partially substitution of natural aggregates with rounded lightweight aggregates. Construction and Building Materials, 2014, 59, 1-9.	7.2	37
47	Effects of end conditions on compressive strength and static elastic modulus of very high strength concrete. Cement and Concrete Research, 2002, 32, 1545-1550.	11.0	35
48	Shear thickening intensity of self-compacting concretes containing rounded lightweight aggregates. Construction and Building Materials, 2015, 79, 40-47.	7.2	34
49	Strength Deterioration of Plain and Metakaolin Concretes in Aggressive Sulfate Environments. Journal of Materials in Civil Engineering, 2010, 22, 403-407.	2.9	33
50	Microstructural properties and pozzolanic activity of calcined kaolins as supplementary cementing materials. Canadian Journal of Civil Engineering, 2012, 39, 1274-1284.	1.3	29
51	Modeling and analysis of the shear capacity of adhesive anchors post-installed into uncracked concrete. Composites Part B: Engineering, 2014, 60, 716-724.	12.0	29
52	Durability and Shrinkage Characteristics of Self-Compacting Concretes Containing Recycled Coarse and/or Fine Aggregates. Advances in Materials Science and Engineering, 2015, 2015, 1-18.	1.8	29
53	Influence of the artificial lightweight aggregate on fresh properties and compressive strength of the self-compacting mortars. Construction and Building Materials, 2016, 116, 151-158.	7.2	29
54	Modeling the mechanical properties of rubberized concretes by neural network and genetic programming. Materials and Structures/Materiaux Et Constructions, 2010, 43, 31-45.	3.1	28

#	Article	IF	CITATIONS
55	Properties of self-compacting portland pozzolana and limestone blended cement concretes containing different replacement levels of slag. Materials and Structures/Materiaux Et Constructions, 2011, 44, 1399-1410.	3.1	28
56	Effect of volcanic pumice powder on the fresh properties of self-compacting concretes with and without silica fume. Materials and Structures/Materiaux Et Constructions, 2014, 47, 1857-1865.	3.1	27
57	Transport properties based multi-objective mix proportioning optimization of high performance concretes. Materials and Structures/Materiaux Et Constructions, 2011, 44, 139-154.	3.1	26
58	The effect of aggregates with high gypsum content on the performance of ultra-high strength concretes and Portland cement mortars. Construction and Building Materials, 2016, 110, 346-354.	7.2	24
59	Permeability properties of concretes with high reactivity metakaolin and calcined impure kaolin. Materials and Structures/Materiaux Et Constructions, 2014, 47, 709-728.	3.1	23
60	Experimental evaluation and modeling of drying shrinkage behavior of metakaolin and calcined kaolin blended concretes. Construction and Building Materials, 2013, 43, 337-347.	7.2	22
61	Physico-mechanical properties of self-compacting concrete containing treated cold-bonded fly ash lightweight aggregates and SiO2 nano-particles. Construction and Building Materials, 2015, 101, 1142-1153.	7.2	21
62	Experimental investigation on durability performance of rubberized concrete. Advances in Concrete Construction, 2014, 2, 193-207.	0.4	20
63	Numerical modeling of time to corrosion induced cover cracking in reinforced concrete using soft-computing based methods. Materials and Structures/Materiaux Et Constructions, 2015, 48, 1739-1756.	3.1	19
64	Assessment of shear capacity of adhesive anchors for structures using neural network based model. Materials and Structures/Materiaux Et Constructions, 2016, 49, 1065-1077.	3.1	17
65	Properties of ultra-high performance fiber reinforced cementitious composites made with gypsum-contaminated aggregates and cured at normal and elevated temperatures. Construction and Building Materials, 2015, 93, 427-438.	7.2	14
66	Prediction of load-carrying capacity of adhesive anchors by soft computing techniques. Materials and Structures/Materiaux Et Constructions, 2007, 40, 939-951.	3.1	12
67	Examining the electrical properties of plain and blended cement concretes: Relationship between charge passed and initial current. Composites Part B: Engineering, 2011, 42, 1517-1524.	12.0	4
68	Combined Use of Natural and Artificial Slag Aggregates in Producing Self-Consolidating Concrete. ACI Materials Journal, 2016, 113, .	0.2	1