
David M Pigott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5617120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 2020, 368, 493-497.	6.0	2,168
2	The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. ELife, 2015, 4, e08347.	2.8	1,428
3	Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21. Lancet, The, 2022, 399, 1513-1536.	6.3	938
4	Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nature Microbiology, 2016, 1, .	5.9	704
5	Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 2019, 4, 854-863.	5.9	699
6	The current and future global distribution and population at risk of dengue. Nature Microbiology, 2019, 4, 1508-1515.	5.9	645
7	Global spread of dengue virus types: mapping the 70 year history. Trends in Microbiology, 2014, 22, 138-146.	3.5	494
8	Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites and Vectors, 2013, 6, 351.	1.0	357
9	Mapping the zoonotic niche of Ebola virus disease in Africa. ELife, 2014, 3, e04395.	2.8	328
10	A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. Journal of the Royal Society Interface, 2013, 10, 20120921.	1.5	306
11	Mapping global environmental suitability for Zika virus. ELife, 2016, 5, .	2.8	299
12	Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasites and Vectors, 2014, 7, 338.	1.0	280
13	Epidemiological data from the COVID-19 outbreak, real-time case information. Scientific Data, 2020, 7, 106.	2.4	280
14	Open access epidemiological data from the COVID-19 outbreak. Lancet Infectious Diseases, The, 2020, 20, 534.	4.6	205
15	Crowding and the shape of COVID-19 epidemics. Nature Medicine, 2020, 26, 1829-1834.	15.2	204
16	Global distribution maps of the leishmaniases. ELife, 2014, 3, .	2.8	203
17	The global distribution of Crimean-Congo hemorrhagic fever. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 503-513.	0.7	193
18	Global mapping of infectious disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120250.	1.8	179

DAVID M PIGOTT

#	Article	IF	CITATIONS
19	Estimating global, regional, and national daily and cumulative infections with SARS-CoV-2 through Nov 14, 2021: a statistical analysis. Lancet, The, 2022, 399, 2351-2380.	6.3	177
20	Quantifying the effects of the COVID-19 pandemic on gender equality on health, social, and economic indicators: a comprehensive review of data from March, 2020, to September, 2021. Lancet, The, 2022, 399, 2381-2397.	6.3	165
21	The many projected futures of dengue. Nature Reviews Microbiology, 2015, 13, 230-239.	13.6	145
22	Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2014, 108, 185-197.	0.7	142
23	Global distribution and environmental suitability for chikungunya virus, 1952 to 2015. Eurosurveillance, 2016, 21, .	3.9	141
24	Mapping the zoonotic niche of Lassa fever in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 483-492.	0.7	111
25	Variation in Childhood Diarrheal Morbidity and Mortality in Africa, 2000–2015. New England Journal of Medicine, 2018, 379, 1128-1138.	13.9	106
26	Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis. The Lancet Global Health, 2018, 6, e270-e278.	2.9	104
27	A global compendium of human dengue virus occurrence. Scientific Data, 2014, 1, 140004.	2.4	100
28	Mapping the zoonotic niche of Marburg virus disease in Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 366-378.	0.7	99
29	Integrating vector control across diseases. BMC Medicine, 2015, 13, 249.	2.3	98
30	Progress and Challenges in Infectious Disease Cartography. Trends in Parasitology, 2016, 32, 19-29.	1.5	85
31	Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet, The, 2017, 390, 2662-2672.	6.3	80
32	Estimating Geographical Variation in the Risk of Zoonotic Plasmodium knowlesi Infection in Countries Eliminating Malaria. PLoS Neglected Tropical Diseases, 2016, 10, e0004915.	1.3	76
33	Predictive performance of international COVID-19 mortality forecasting models. Nature Communications, 2021, 12, 2609.	5.8	74
34	Funding for malaria control 2006–2010: A comprehensive global assessment. Malaria Journal, 2012, 11, 246.	0.8	61
35	Updates to the zoonotic niche map of Ebola virus disease in Africa. ELife, 2016, 5, .	2.8	61
36	Tracking spending on malaria by source in 106 countries, 2000–16: an economic modelling study. Lancet Infectious Diseases, The, 2019, 19, 703-716.	4.6	52

DAVID M PIGOTT

#	Article	IF	CITATIONS
37	Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk. Parasites and Vectors, 2017, 10, 148.	1.0	45
38	Global database of leishmaniasis occurrence locations, 1960–2012. Scientific Data, 2014, 1, 140036.	2.4	43
39	A comprehensive database of the geographic spread of past human Ebola outbreaks. Scientific Data, 2014, 1, 140042.	2.4	39
40	The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Scientific Data, 2017, 4, 170050.	2.4	39
41	Estimating the burden of dengue and the impact of release of wMel Wolbachia-infected mosquitoes in Indonesia: a modelling study. BMC Medicine, 2019, 17, 172.	2.3	38
42	How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America. PLoS ONE, 2017, 12, e0183583.	1.1	37
43	A global compendium of human Crimean-Congo haemorrhagic fever virus occurrence. Scientific Data, 2015, 2, 150016.	2.4	36
44	Prioritising Infectious Disease Mapping. PLoS Neglected Tropical Diseases, 2015, 9, e0003756.	1.3	30
45	Data curation during a pandemic and lessons learned from COVID-19. Nature Computational Science, 2021, 1, 9-10.	3.8	28
46	A database of geopositioned Middle East Respiratory Syndrome Coronavirus occurrences. Scientific Data, 2019, 6, 318.	2.4	22
47	Mapping the global distribution of podoconiosis: Applying an evidence consensus approach. PLoS Neglected Tropical Diseases, 2019, 13, e0007925.	1.3	18
48	Policy and Science for Global Health Security: Shaping the Course of International Health. Tropical Medicine and Infectious Disease, 2019, 4, 60.	0.9	12
49	Predicting the environmental suitability for onchocerciasis in Africa as an aid to elimination planning. PLoS Neglected Tropical Diseases, 2021, 15, e0008824.	1.3	10
50	Informing Rift Valley Fever preparedness by mapping seasonally varying environmental suitability. International Journal of Infectious Diseases, 2020, 99, 362-372.	1.5	9
51	Enhancement of Ebola Preparedness across Africa. Emerging Infectious Diseases, 2016, 22, .	2.0	1