
Clement Oluseye Ogunkunle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5617033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper-based nanoparticles in soil: Uptake, bioaccumulation, toxicity, and biotransformation in plants. , 2022, , 341-366.		0
2	Nanomaterial-based biosorbents: Adsorbent for efficient removal of selected organic pollutants from industrial wastewater. Emerging Contaminants, 2022, 8, 46-58.	2.2	59
3	Phytoaccumulation potential of nine plant species for selected nutrients, rare earth elements (REEs), germanium (Ge), and potentially toxic elements (PTEs) in soil. International Journal of Phytoremediation, 2022, 24, 1310-1320.	1.7	9
4	Engineered nanomaterial-mediated changes in the growth and development of common agricultural crops. , 2022, , 345-375.		2
5	Phytoextraction of rare earth elements, germanium and other trace elements as affected by fertilization and liming. Environmental Technology and Innovation, 2022, 28, 102607.	3.0	1
6	Potential toxic elements in market vegetables from urban areas of southwest Nigeria: Concentration levels and probabilistic potential dietary health risk among the population. , 2022, 1, 100004.		1
7	Shortâ€Term Aging of Podâ€Derived Biochar Reduces Soil Cadmium Mobility and Ameliorates Cadmium Toxicity to Soil Enzymes and Tomato. Environmental Toxicology and Chemistry, 2021, 40, 3306-3316.	2.2	13
8	Interaction of nanoparticles with soil. , 2021, , 101-132.		8
9	Phytoavailablility and fractionation of cadmium and lead in vegetable farm soils in Ilorin, north-central, Nigeria. Ife Journal of Science, 2021, 23, 31-40.	0.1	0
10	Organic carbon, nitrogen and phosphorus enrichment potentials from litter fall in selected greenbelt species during a seasonal transition in Nigeria's savanna. Tropical Ecology, 2021, 62, 580.	0.6	1
11	Role of secondary metabolites in salt and heavy metal stress mitigation by halophytic plants: An overview. , 2021, , 307-327.		4
12	Co-application of indigenous arbuscular mycorrhizal fungi and nano-TiO2 reduced Cd uptake and oxidative stress in pre-flowering cowpea plants. Environmental Technology and Innovation, 2020, 20, 101163.	3.0	13
13	Cadmium toxicity in cowpea plant: Effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. Journal of Biotechnology, 2020, 310, 54-61.	1.9	67
14	Heavy Metal Uptake Responses in Plants Grown on Crude Oil-Polluted Soils as Prospects for Phytoremediation. Journal of Applied Sciences and Environmental Management, 2020, 24, 1153-1159.	0.1	0
15	Effect of Low-Dose Nano Titanium Dioxide Intervention on Cd Uptake and Stress Enzymes Activity in Cd-Stressed Cowpea [Vigna unguiculata (L.) Walp] Plants. Bulletin of Environmental Contamination and Toxicology, 2020, 104, 619-626.	1.3	22
16	Effect of nanosized anatase TiO2 on germination, stress defense enzymes, and fruit nutritional quality of Abelmoschus esculentus (L.) Moench (okra). Arabian Journal of Geosciences, 2020, 13, 1.	0.6	17
17	Heavy Metal Status of Major Vegetable Farmsoils in Ilorin Metropolis, Kwara State, Nigeria. Journal of Applied Sciences and Environmental Management, 2020, 24, 467-472.	0.1	0
18	Copper uptake, tissue partitioning and biotransformation evidence by XANES in cowpea (Vigna) Tj ETQq0 0 0 rgB	T /Overloc 1.7	k 10 Tf 50 6

Nanotechnology, Monitoring and Management, 2019, 12, 100231.

#	Article	IF	CITATIONS
19	Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits. Environmental Technology and Innovation, 2019, 14, 100325.	3.0	58
20	Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate. Ecotoxicology and Environmental Safety, 2018, 155, 86-93.	2.9	39
21	Citrus Epicarp-Derived Biochar Reduced Cd Uptake and Ameliorates Oxidative Stress in Young Abelmoschus esculentus (L.) Moench (okra) Under Low Cd Stress. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 827-833.	1.3	10
22	Heavy Metals Concentration in Rhizosphere and Tissues of Smooth Pigweed (<i>A. hybridus</i>) and Bush Okra (<i>C. olitorius</i>) cultivated on an Abandoned Dumpsite. Journal of Applied Sciences and Environmental Management, 2018, 22, 1059.	0.1	0
23	Identification of Sesbania sesban (L.) Merr. as an Efficient and Well Adapted Phytoremediation Tool for Cd Polluted Soils. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 867-873.	1.3	17
24	Eco-distribution of Vitellaria paradoxa (G.F. Gaertn) in Kwara State, Nigeria. Notulae Scientia Biologicae, 2017, 9, 503-507.	0.1	0
25	Sources, Transport Pathways and the Ecological Risks of Heavy Metals present in the Roadside Soil Environment in Urban Areas. Environmental Research, Engineering and Management, 2017, 73, .	0.4	3
26	Evaluating the trace metal pollution of an urban paddy soil and bioaccumulation in rice (Oryza sativa) Tj ETQqO Environmental Earth Sciences, 2016, 75, 1.	0 0 rgBT /(1.3	Overlock 10 Tf 16
27	Ecological vulnerability assessment of trace metals in topsoil around a newly established metal scrap factory in southwestern Nigeria: geochemical, geospatial and exposure risk analyses. Rendiconti Lincei, 2016, 27, 573-588.	1.0	4
28	Surrogate approach to determine heavy metal loads in a moss species – Barbula lambaranensis. Journal of King Saud University - Science, 2016, 28, 193-197.	1.6	9
29	Heavy metal pollution and ecological geochemistry of soil impacted by activities of oil industry in the Niger Delta, Nigeria. Environmental Earth Sciences, 2016, 75, 1.	1.3	22
30	Assessment of metallic pollution status of surface water and aquatic macrophytes of earthen dams in Ilorin, north-central of Nigeria as indicators of environmental health. Journal of King Saud University - Science, 2016, 28, 324-331.	1.6	21
31	Short-term effects of early-season fire on herbaceous composition, dry matter production and soil fertility in Guinea savanna, Nigeria. Archives of Biological Sciences, 2016, 68, 7-16.	0.2	7
32	Transfer of metals from crude oil impacted soils to some native wetland species, the Niger-delta, Nigeria: Implications for phytoremediation potentials. Journal of Agricultural Sciences (Belgrade), 2016, 61, 181-199.	0.1	0
33	Growth Response of Three Leafy Vegetables to the Allelopathic Effect of <i>Vitellaria paradoxa</i> . Notulae Scientia Biologicae, 2015, 7, 460-463.	0.1	2
34	Bioaccumulation and associated dietary risks of Pb, Cd, and Zn in amaranth (Amaranthus cruentus) and jute mallow (Corchorus olitorius) grown on soil irrigated using polluted water from Asa River, Nigeria. Environmental Monitoring and Assessment, 2015, 187, 281.	1.3	23
35	Assessing the air pollution tolerance index and anticipated performance index of some tree species for biomonitoring environmental health. Agroforestry Systems, 2015, 89, 447-454.	0.9	79
36	Assessment of Metal Pollution of Soil and Diagnostic Species Associated with Oil Spills in the Niger Delta, Nigeria. Environmental Research, Engineering and Management, 2015, 71, .	0.4	7

#	Article	IF	CITATIONS
37	Influence of Tree Characters and Climate on Litter Characteristics in <i>Daniellia oliveri</i> (Rolfe) Hutch. & Dalziel. Journal of Applied Sciences and Environmental Management, 2014, 18, 85.	0.1	Ο
38	Contamination and spatial distribution of heavy metals in topsoil surrounding a mega cement factory. Atmospheric Pollution Research, 2014, 5, 270-282.	1.8	67
39	Anatomical Response of <i>Amaranthus hybridus</i> Linn. as Influenced by Pharmaceutical Effluents. Notulae Scientia Biologicae, 2013, 5, 431-437.	0.1	4
40	Assessment of heavy metal contents of <i>Lycopersicum esculentum</i> mill. (tomato) and <i>Capsicum chinense l.</i> (pepper) irrigated with treated and untreated detergent and soap wastewaters. Ethiopian Journal of Environmental Studies and Management, 2012, 5, .	0.1	2
41	Soil Fertility Status under Different Tree Cropping System in a Southwestern Zone of Nigeria. Notulae Scientia Biologicae, 2011, 3, 123-128.	0.1	11