Lucio Montecchio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5617008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First Record of Thousand Cankers Disease <i>Geosmithia morbida</i> and Walnut Twig Beetle <i>Pityophthorus juglandis</i> on <i>Juglans nigra</i> in Europe. Plant Disease, 2014, 98, 696-696.	1.4	65
2	Enzymatic activities of three ectomycorrhizal types of Quercus robur L. in relation to tree decline and thinning. Soil Biology and Biochemistry, 2007, 39, 2897-2904.	8.8	51
3	Vertical distribution of the ectomycorrhizal community in the top soil of Norway spruce stands. European Journal of Forest Research, 2008, 127, 347-357.	2.5	36
4	Short-term effect of removing tree competition on the ectomycorrhizal status of a declining pedunculate oak forest (Quercus robur L.). Forest Ecology and Management, 2007, 244, 129-140.	3.2	33
5	First Record of Thousand Cankers Disease Fungal Pathogen <i>Geosmithia morbida</i> and Walnut Twig Beetle <i>Pityophthorus juglandis</i> on <i>Juglans regia</i> in Europe. Plant Disease, 2014, 98, 1445-1445.	1.4	29
6	First Report of <i>Chalara fraxinea</i> on Common Ash in Italy. Plant Disease, 2010, 94, 133-133.	1.4	28
7	Efficacy tests on commercial fungicides against ash dieback in vitro and by trunk injection. Urban Forestry and Urban Greening, 2014, 13, 697-703.	5.3	24
8	The ectomycorrhizal community structure in high mountain Norway spruce stands. Trees - Structure and Function, 2008, 22, 13-22.	1.9	21
9	Plant Pathogenic Fungi Associated with Coraebus florentinus (Coleoptera: Buprestidae) Attacks in Declining Oak Forests. Forests, 2019, 10, 488.	2.1	21
10	Phytotoxic Metabolites Produced by <i>Diaporthella cryptica</i> , the Causal Agent of Hazelnut Branch Canker. Journal of Agricultural and Food Chemistry, 2018, 66, 3435-3442.	5.2	20
11	Diversity and Pathogenicity of Phytophthora Species Associated with Declining Alder Trees in Italy and Description of Phytophthora alpina sp. nov. Forests, 2020, 11, 848.	2.1	20
12	First Report of <i>Fusarium solani</i> Phylogenetic Species 25 Associated With Early Stages of Thousand Cankers Disease on <i>Juglans nigra</i> and <i>Juglans regia</i> in Italy. Plant Disease, 2015, 99, 1183-1183.	1.4	20
13	Diplodia fraxini and Diplodia subglobosa: The Main Species Associated with Cankers and Dieback of Fraxinus excelsior in North-Eastern Italy. Forests, 2020, 11, 883.	2.1	19
14	Thousand cankers disease in Europe: an overview. EPPO Bulletin, 2016, 46, 335-340.	0.8	18
15	First Report of <i>Phytophthora acerina</i> , <i>P. pini</i> , and <i>P. plurivora</i> Causing Root Rot and Sudden Death of Olive Trees in Italy. Plant Disease, 2020, 104, 996-996.	1.4	18
16	Probability of ectomycorrhizal infection in a declining stand of common oak. Annales Des Sciences Forestières, 1996, 53, 743-752.	1.2	16
17	A geostatistical model to describe root vitality and ectomycorrhization in Norway spruce. Plant Biosystems, 2008, 142, 391-400.	1.6	16
18	The ectomycorrhizal community in Mediterranean old-growth <i>Quercus ilex</i> forests along an altitudinal gradient. Plant Biosystems, 2014, 148, 74-82.	1.6	16

LUCIO МОNТЕССНІО

#	Article	IF	CITATIONS
19	Safety assessment of trees used as anchors in cable-supported tree harvesting based on experimental observations. Biosystems Engineering, 2019, 186, 71-82.	4.3	16
20	Sulfadiazine uptake and effects in common hazel (Corylus avellana L.). Environmental Science and Pollution Research, 2015, 22, 13362-13371.	5.3	15
21	A Venturi Effect Can Help Cure Our Trees. Journal of Visualized Experiments, 2013, , .	0.3	14
22	Combined effects of thinning and decline on fine root dynamics in a Quercus robur L. forest adjoining the Italian Pre-Alps. Annals of Botany, 2017, 119, 1235-1246.	2.9	14
23	Detecting asymptomatic inkâ€diseased chestnut trees by the composition of the ectomycorrhizal community. Forest Pathology, 2012, 42, 501-509.	1.1	13
24	State of the Art on the Use of Trees as Supports and Anchors in Forest Operations. Forests, 2018, 9, 467.	2.1	12
25	Hyfraxinic Acid, a Phytotoxic Tetrasubstituted Octanoic Acid, Produced by the Ash (<i>Fraxinus) Tj ETQq1 1 0.78 Analogues. Journal of Agricultural and Food Chemistry, 2019, 67, 13617-13623.</i>	4314 rgBT 5.2	- /Overlock 12
26	First Report of Damping-Off of Common Oak Plantlets Caused by Cylindrocladiella parva in Italy. Plant Disease, 2007, 91, 771-771.	1.4	12
27	Green alder decline in the Italian Alps. Forest Ecology and Management, 2012, 281, 75-83.	3.2	10
28	Vegetative compatibility and conversion to hypovirulence among Italian isolates of Cryphonectria parasitica. Forest Pathology, 1995, 25, 232-239.	1.1	9
29	Largeâ€scale fuzzy ruleâ€based prediction for suitable chestnut ink disease sites: a case study in northâ€east <scp>I</scp> taly. Forest Pathology, 2015, 45, 311-323.	1.1	8
30	First Report of <i>Phytophthora pistaciae</i> Causing Root and Collar Rot on Nursery Plants of <i>Pistacia lentiscus</i> in Italy. Plant Disease, 2020, 104, 1564-1564.	1.4	8
31	An enhanced trunk injection formulation of potassium phosphite against chestnut ink disease. Arboricultural Journal, 2017, 39, 125-141.	0.8	7
32	First Report of <i>Diplodia fraxini</i> and <i>Diplodia subglobosa</i> Causing Canker and Dieback of <i>Fraxinus excelsior</i> in Slovenia. Plant Disease, 2022, 106, 26-29.	1.4	7
33	First Report ofCylindrocarpon destructanson English Walnut in Italy Plant Disease, 1995, 79, 967.	1.4	7
34	Damping-Off of Beech Seedlings Caused by Fusarium avenaceum in Italy. Plant Disease, 2005, 89, 1014-1014.	1.4	6
35	Potential spread of forest soil-borne fungi through earthworm consumption and casting. IForest, 2015, 8, 295-301.	1.4	6
36	A sampling method to describe the Norway spruce ectomycorrhizal community at plant level. Plant Biosystems, 2009, 143, 462-472.	1.6	3

LUCIO МОНТЕССНІО

#	Article	IF	CITATIONS
37	Dormouse injuries predispose beech to infection by <i>Neonectria ditissima</i> . Forest Pathology, 2011, 41, 114-119.	1.1	3
38	Phylogeny and Pathogenicity of Phytophthora Species Associated with Artichoke Crown and Root Rot and Description of Phytophthora marrasii sp. nov Agriculture (Switzerland), 2021, 11, 873.	3.1	3
39	First Report of Eutypella Canker Caused by <i>Eutypella parasitica</i> on <i>Acer campestre</i> in Italy. Plant Disease, 2020, 104, 1257.	1.4	3
40	A Twig Canker on English Hawthorn Caused by Coniothyrium sporulosum in Italy. Plant Disease, 2002, 86, 1403-1403.	1.4	2
41	A Twig Canker on Russian Olive Caused by Phomopsis arnoldiae in Italy. Plant Disease, 2004, 88, 1048-1048.	1.4	2
42	Le ectomicorrize come indicatori di salute delle piante forestali. , 2009, , .		0
43	Le malattie in vivaio e le strategie di difesa integrata. , 2009, , .		0
44	Ectomycorrhizae and Forest Plants Fitness. , 2010, , .		0