
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5616038/publications.pdf Version: 2024-02-01

FENC 7HOL

#	Article	IF	CITATIONS
1	Highly stereoselective synthesis of spirocyclopropylthiooxindoles and biological evaluation. Organic Chemistry Frontiers, 2022, 9, 2640-2646.	2.3	3
2	Organocatalytic enantioselective reactions involving prochiral carbocationic intermediates. Chemical Communications, 2021, 57, 9178-9191.	2.2	12
3	Highly Enantioselective CuAAC of Functional Tertiary Alcohols Featuring an Ethynyl Group and Their Kinetic Resolution. Angewandte Chemie - International Edition, 2021, 60, 8488-8493.	7.2	46
4	Highly Enantioselective CuAAC of Functional Tertiary Alcohols Featuring an Ethynyl Group and Their Kinetic Resolution. Angewandte Chemie, 2021, 133, 8569-8574.	1.6	12
5	Catalytic Enantioselective Transfer Hydrogenation–Carboxylative Cyclization to 4-Fluoroalkyl 2-Oxazolidinone with CO ₂ as the C1 Synthon. Organic Letters, 2021, 23, 2726-2730.	2.4	4
6	Au-Catalyzed Formal Allylation of Diazo(thio)oxindoles: Application to Tandem Asymmetric Synthesis of Quaternary Stereocenters. Organic Letters, 2021, 23, 4864-4869.	2.4	15
7	Enantioselective Synthesis of C ^α -Tetrasubstituted <i>N</i> -Hydroxyl-α-amino Nitriles via Cyanation of Ketonitrones Using Me ₂ (CH ₂ Cl)SiCN. Organic Letters, 2021, 23, 8471-8476.	2.4	10
8	Enantioselective carboxylative cyclization of propargylic alcohol with carbon dioxide under mild conditions. Chinese Chemical Letters, 2020, 31, 324-328.	4.8	21
9	Regiodivergent Intramolecular Nucleophilic Addition of Ketimines for the Diverse Synthesis of Azacycles. Angewandte Chemie, 2020, 132, 1651-1660.	1.6	1
10	Regiodivergent Intramolecular Nucleophilic Addition of Ketimines for the Diverse Synthesis of Azacycles. Angewandte Chemie - International Edition, 2020, 59, 1634-1643.	7.2	31
11	Enantioselective synthesis of <i>P</i> -chiral tertiary phosphine oxides with an ethynyl group <i>via</i> Cu(<scp>i</scp>)-catalyzed azide–alkyne cycloaddition. Chemical Science, 2020, 11, 97-106.	3.7	55
12	Direct Electrochemical Defluorinative Carboxylation of <i>gem</i> -Difluoroalkenes with Carbon Dioxide. Organic Letters, 2020, 22, 8424-8429.	2.4	44
13	Catalytic enantioselective synthesis using carbon dioxide as a C1 synthon. Organic and Biomolecular Chemistry, 2020, 18, 8597-8619.	1.5	34
14	Catalytic enantioselective construction of vicinal quaternary carbon stereocenters. Chemical Science, 2020, 11, 9341-9365.	3.7	96
15	Direct electrochemical defluorinative carboxylation of α-CF ₃ alkenes with carbon dioxide. Chemical Science, 2020, 11, 10414-10420.	3.7	83
16	H-bond donor-directed switching of diastereoselectivity in the Michael addition of α-azido ketones to nitroolefins. Chemical Science, 2020, 11, 3852-3861.	3.7	29
17	Asymmetric Synthesis of Oxindole-Derived Vicinal Tetrasubstituted Acyclic Amino Acid Derivatives by the Mannich-Type Reaction. Journal of Organic Chemistry, 2020, 85, 9661-9671.	1.7	14
18	Enantioselective Cu(I)-Catalyzed Cycloaddition of Prochiral Diazides with Terminal or 1-lodoalkynes. Organic Letters, 2020, 22, 1270-1274.	2.4	23

#	Article	IF	CITATIONS
19	Recent Advances in the Enantioselective Copper(I)-Catalyzed Azide-Alkyne Cycloaddition Reaction. Chinese Journal of Organic Chemistry, 2020, 40, 3065.	0.6	16
20	Stereoselective defluorinative carboxylation of <i>gem</i> -difluoroalkenes with carbon dioxide. Organic Chemistry Frontiers, 2019, 6, 3678-3682.	2.3	32
21	Catalytic Enantioselective Construction of Spiro Quaternary Carbon Stereocenters. ACS Catalysis, 2019, 9, 1820-1882.	5.5	227
22	Catalytic Enantioselective Protonation of Monofluorinated Silyl Enol Ethers towards Chiral αâ€Fluoroketones. Chinese Journal of Chemistry, 2019, 37, 799-806.	2.6	16
23	Multifunctional 1,3-diphenylguanidine for the carboxylative cyclization of homopropargyl amines with CO ₂ under ambient temperature and pressure. Chemical Communications, 2019, 55, 14303-14306.	2.2	13
24	A highly efficient Hg(OTf) ₂ -mediated Sakurai–Hosomi allylation of <i>N-tert</i> -butyloxycarbonylamino sulfones, aldehydes, fluoroalkyl ketones and α,β-unsaturated enones using allyltrimethylsilane. Organic Chemistry Frontiers, 2019, 6, 3989-3995.	2.3	8
25	GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solutions, 2018, 22, 1.	2.2	158
26	Catalytic enantioselective synthesis of α-chiral azides. Organic Chemistry Frontiers, 2018, 5, 1542-1559.	2.3	54
27	Simultaneous estimation of GLONASS pseudorange inter-frequency biases in precise point positioning using undifferenced and uncombined observations. GPS Solutions, 2018, 22, 1.	2.2	59
28	An efficient Fe(III)-catalyzed 1,6-conjugate addition of para-quinone methides with fluorinated silyl enol ethers toward β,β-diaryl α-fluorinated ketones. Tetrahedron, 2018, 74, 7395-7398.	1.0	24
29	One-Pot Sequential [3 + 3] Dipolar Cycloaddition of Aldehyde or Ketone and Hydroxylamine with Spirocyclopropyl Oxindole. Journal of Organic Chemistry, 2018, 83, 12763-12774.	1.7	18
30	Development of Synthetic Methodologies via Catalytic Enantioselective Synthesis of 3,3-Disubstituted Oxindoles. Accounts of Chemical Research, 2018, 51, 1443-1454.	7.6	321
31	An Optimal Tropospheric Tomography Method Based on the Multi-GNSS Observations. Remote Sensing, 2018, 10, 234.	1.8	23
32	Au(I)/Chiral Tertiary Amine Catalyzed Tandem Olefination/Asymmetric Cyclization Reaction to Quaternary Spirocyclic Oxindoles. Acta Chimica Sinica, 2018, 76, 862.	0.5	10
33	Activation of (salen)Col complex by phosphorane for carbon dioxide transformation at ambient temperature and pressure. Green Chemistry, 2017, 19, 3908-3915.	4.6	66
34	Utilization of CO ₂ as a C1 Building Block in a Tandem Asymmetric A ³ Coupling-Carboxylative Cyclization Sequence to 2-Oxazolidinones. ACS Catalysis, 2017, 7, 8588-8593.	5.5	71
35	Formal Uncertainty and Dispersion of Single and Double Difference Models for GNSS-Based Attitude Determination. Sensors, 2017, 17, 408.	2.1	14
36	The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning. Sensors, 2017, 17, 756.	2.1	16

#	Article	IF	CITATIONS
37	Reduction of Kinematic Short Baseline Multipath Effects Based on Multipath Hemispherical Map. Sensors, 2016, 16, 1677.	2.1	21
38	Catalytic Enantioselective Construction of Sulfur-Containing Tetrasubstituted Carbon Stereocenters. ACS Catalysis, 2016, 6, 5319-5344.	5.5	118
39	Catalytic Enantioselective Desymmetrization Reactions to All-Carbon Quaternary Stereocenters. Chemical Reviews, 2016, 116, 7330-7396.	23.0	583
40	The first catalytic asymmetric thioacetalization by chiral phosphoric acid catalysis. Organic and Biomolecular Chemistry, 2016, 14, 2205-2209.	1.5	12
41	Activation of Chiral (Salen)AlCl Complex by Phosphorane for Highly Enantioselective Cyanosilylation of Ketones and Enones. Journal of the American Chemical Society, 2016, 138, 416-425.	6.6	108
42	Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications. Frontiers of Earth Science, 2016, 10, 772-783.	0.9	21
43	A Journey in the Catalytic Synthesis of 3-Substituted 3-AminoÂoxindoles. Synlett, 2015, 26, 2491-2504.	1.0	61
44	Recycle Waste Salt as Reagent: A One-Pot Substitution/Krapcho Reaction Sequence to α-Fluorinated Esters and Sulfones. Organic Letters, 2015, 17, 972-975.	2.4	29
45	An efficient catalyst-free Mukaiyama-aldol reaction of fluorinated enol silyl ethers with tryptanthrin. Organic and Biomolecular Chemistry, 2015, 13, 8906-8911.	1.5	40
46	Recent advances in the use of chiral metal complexes with achiral ligands for application in asymmetric catalysis. Catalysis Science and Technology, 2015, 5, 3441-3451.	2.1	98
47	Successively Recycle Waste as Catalyst: A One-Pot Wittig/1,4-Reduction/Paal–Knorr Sequence for Modular Synthesis of Substituted Furans. Organic Letters, 2015, 17, 1557-1560.	2.4	63
48	Catalytic asymmetric sulfenylation to structurally diverse dithioketals. Chemical Communications, 2015, 51, 16255-16258.	2.2	60
49	Ga(OTf) ₃ Catalyzed Highly Efficient Substitution Reaction of 3-Hydroxyoxindoles Using TMSN ₃ . Acta Chimica Sinica, 2015, 73, 685.	0.5	12
50	Catalytic Asymmetric Electrophilic Amination Reactions To Form Nitrogen-Bearing Tetrasubstituted Carbon Stereocenters. Synthesis, 2014, 46, 2983-3003.	1.2	100
51	Asymmetric Triple Relay Catalysis: Enantioselective Synthesis of Spirocyclic Indolines through a Oneâ€Pot Process Featuring an Asymmetric 6Ï€ Electrocyclization. Angewandte Chemie - International Edition, 2014, 53, 13740-13745.	7.2	147
52	Highly enantioselective Michael addition of 3-arylthio- and 3-alkylthiooxindoles to nitroolefins catalyzed by a simple cinchona alkaloid derived phosphoramide. Chemical Communications, 2014, 50, 15179-15182.	2.2	38
53	Asymmetric Copper(I)-Catalyzed Azide–Alkyne Cycloaddition to Quaternary Oxindoles. Journal of the American Chemical Society, 2013, 135, 10994-10997.	6.6	151
54	A Highly Diastereo- and Enantioselective Hg(II)-Catalyzed Cyclopropanation of Diazooxindoles and Alkenes. Organic Letters, 2013, 15, 42-45.	2.4	106

#	Article	IF	CITATIONS
55	Organocatalytic asymmetric synthesis of 3,3-disubstituted oxindoles featuring two heteroatoms at the C3 position. Chemical Communications, 2013, 49, 2022.	2.2	75
56	A Facile Method for the Synthesis of 3-Substituted 3-(Alkylthio)oxindoles or 3-Alkoxyoxindoles. Synthesis, 2012, 44, 3129-3144.	1.2	21
57	A catalytic metal-free Ritter reaction to 3-substituted 3-aminooxindoles. Organic and Biomolecular Chemistry, 2012, 10, 3178.	1.5	47
58	Metal-Free Tandem Friedel–Crafts/Lactonization Reaction to Benzofuranones Bearing a Quaternary Center at C3 Position. Journal of Organic Chemistry, 2012, 77, 4354-4362.	1.7	50
59	Organocatalytic asymmetric Michael addition of unprotected 3-substituted oxindoles to 1,4-naphthoquinone. Beilstein Journal of Organic Chemistry, 2012, 8, 1360-1365.	1.3	24
60	A Highly Efficient Friedel–Crafts Reaction of 3â€Hydroxyoxindoles and Aromatic Compounds to 3,3â€Điaryl and 3â€Alkylâ€3â€aryloxindoles Catalyzed by Hg(ClO ₄) ₂ â‹3 H <sul Chemistry - an Asian Journal, 2012, 7, 233-241.</sul 	b>2ĸ/sub>	O. 58
61	Organocatalytic Asymmetric Strecker Reaction of Di- and Trifluoromethyl Ketoimines. Remarkable Fluorine Effect. Organic Letters, 2011, 13, 3826-3829.	2.4	169
62	Cinchona alkaloid-based phosphoramide catalyzed highly enantioselective Michael addition of unprotected 3-substituted oxindoles to nitroolefins. Chemical Science, 2011, 2, 2035.	3.7	161
63	Organocatalytic Asymmetric αâ€Amination of Unprotected 3â€Aryl and 3â€Aliphatic Substituted Oxindoles using Diâ€ <i>tert</i> â€butyl Azodicarboxylate. Advanced Synthesis and Catalysis, 2011, 353, 2945-2952.	2.1	71
64	Catalytic Asymmetric Synthesis of Oxindoles Bearing a Tetrasubstituted Stereocenter at the Câ€3 Position. Advanced Synthesis and Catalysis, 2010, 352, 1381-1407.	2.1	1,161
65	Improving the Atom Efficiency of the Wittig Reaction by a "Waste as Catalyst/Co atalyst―Strategy. Angewandte Chemie - International Edition, 2010, 49, 4976-4980.	7.2	119
66	A facile method for the synthesis of oxindole based quaternary α-aminonitriles via the Strecker reaction. Organic and Biomolecular Chemistry, 2010, 8, 3847.	1.5	117
67	Organocatalytic Michael addition of unprotected 3-substituted oxindoles to nitroolefins. Organic and Biomolecular Chemistry, 2010, 8, 2912.	1.5	63
68	Asymmetric construction of quaternary stereocenters by direct organocatalytic amination of 3-substituted oxindoles. Chemical Communications, 2009, , 6753.	2.2	154