
Lang Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5615946/publications.pdf Version: 2024-02-01

LANC HUANC

#	Article	IF	CITATIONS
1	Multi-functionalized carbon aerogels derived from chitosan. Journal of Colloid and Interface Science, 2022, 605, 790-802.	5.0	22
2	Highly selective hydrogenation of phenol to cyclohexanone over a Pd-loaded N-doped carbon catalyst derived from chitosan. Journal of Colloid and Interface Science, 2022, 605, 82-90.	5.0	39
3	Sandwich construction of chitosan/reduced graphene oxide composite as additive-free electrode material for high-performance supercapacitors. Carbohydrate Polymers, 2021, 255, 117397.	5.1	44
4	Carbon-carbon dense network composite with hierarchical structure for additive-free and high volumetric performance supercapacitor. Journal of Power Sources, 2021, 497, 229878.	4.0	27
5	Solvent-free pulverization and surface fatty acylation of pulp fiber for property-enhanced cellulose/polypropylene composites. Journal of Cleaner Production, 2020, 244, 118811.	4.6	10
6	Interfacial crystals morphology modification in cellulose fiber/polypropylene composite by mechanochemical method. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105765.	3.8	23
7	A Temperatureâ€Responsive Electrolyte Endowing Superior Safety Characteristic of Lithium Metal Batteries. Advanced Energy Materials, 2020, 10, 1903441.	10.2	95
8	From cellulose to 1,2,4-benzenetriol <i>via</i> catalytic degradation over a wood-based activated carbon catalyst. Catalysis Science and Technology, 2020, 10, 3423-3432.	2.1	10
9	Heteroatom-doped hierarchical porous carbon aerogels from chitosan for high performance supercapacitors. International Journal of Biological Macromolecules, 2020, 155, 131-141.	3.6	49
10	Solvent-free production of carbon materials with developed pore structure from biomass for high-performance supercapacitors. Industrial Crops and Products, 2020, 150, 112384.	2.5	18
11	One-Step Activation and Surface Fatty Acylation of Cellulose Fibers in a Solvent-Free Condition. ACS Sustainable Chemistry and Engineering, 2019, 7, 15920-15927.	3.2	24
12	Deciphering the Interface of a Highâ€Voltage (5 Vâ€Class) Liâ€Ion Battery Containing Additiveâ€Assisted Sulfolaneâ€Based Electrolyte. Small Methods, 2019, 3, 1900546.	4.6	33
13	Mechanical activation and characterization of micronized cellulose particles from pulp fiber. Industrial Crops and Products, 2019, 141, 111750.	2.5	20
14	Preparation and application performance study of biomass-based carbon materials with various morphologies by a hydrothermal/soft template method. Nanotechnology, 2019, 30, 185702.	1.3	22
15	Chitosan-based layered carbon materials prepared via ionic-liquid-assisted hydrothermal carbonization and their performance study. Journal of the Taiwan Institute of Chemical Engineers, 2019, 101, 231-243.	2.7	25
16	N-doped porous carbon from different nitrogen sources for high-performance supercapacitors and CO2 adsorption. Journal of Alloys and Compounds, 2019, 786, 826-838.	2.8	81
17	Clean production of 5-hydroxymethylfurfural from cellulose using a hydrothermal/biomass-based carbon catalyst. Journal of Cleaner Production, 2019, 213, 1096-1102.	4.6	51
18	Chemical preconversion of softwood with alkaline hydrogen peroxide: Creating a denser carbohydrate feedstock supply for biorefinery systems. Journal of the Energy Institute, 2019, 92, 665-672.	2.7	1

Lang Huang

#	Article	IF	CITATIONS
19	Toughness and crystallization enhancement in wood fiber-reinforced polypropylene composite through controlling matrix nucleation. Journal of Materials Science, 2018, 53, 6542-6551.	1.7	26
20	Ni-doped mesoporous carbon obtained from hydrothermal carbonization of cellulose and their catalytic hydrogenation activity study. Journal of Materials Science, 2018, 53, 7900-7910.	1.7	19
21	Sustainable Use of Coffee Husks For Reinforcing Polyethylene Composites. Journal of Polymers and the Environment, 2018, 26, 48-58.	2.4	49
22	Carbon composite materials with ordered mesoporous structures from straw: hydrothermal preparation and application as catalysts. Nanotechnology, 2018, 29, 385604.	1.3	4
23	Comparative Study of the Structure of Hydroproducts Derived from Loblolly Pine and Straw Grass. ACS Sustainable Chemistry and Engineering, 2017, 5, 6131-6138.	3.2	2
24	Structural elucidation of hydro-products from hydrothermal carbonization of loblolly pine at different temperatures using NMR techniques. Energy, 2017, 133, 171-178.	4.5	9
25	Non-isothermal crystallization kinetics of wood-flour/polypropylene composites in the presence of β-nucleating agent. Journal of Forestry Research, 2016, 27, 949-958.	1.7	6