
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5615352/publications.pdf Version: 2024-02-01

RINA MEIDAN

#	Article	IF	CITATIONS
1	Interferon-Tau regulates a plethora of functions in the corpus luteum. Domestic Animal Endocrinology, 2022, 78, 106671.	1.6	5
2	Diverse actions of sirtuin-1 on ovulatory genes and cell death pathways in human granulosa cells. Reproductive Biology and Endocrinology, 2022, 20, .	3.3	6
3	Sirtuin-1 inhibits endothelin-2 expression in human granulosa-lutein cells via hypoxia inducible factor 1 alpha and epigenetic modificationsâ€. Biology of Reproduction, 2021, 104, 387-398.	2.7	9
4	Sirtuin 1 and Sirtuin 3 in Granulosa Cell Tumors. International Journal of Molecular Sciences, 2021, 22, 2047.	4.1	5
5	Downregulated luteolytic pathways in the transcriptome of early pregnancy bovine corpus luteum are mimicked by interferon-tau in vitro. BMC Genomics, 2021, 22, 452.	2.8	7
6	Effect of natural pre-luteolytic prostaglandin F2α pulses on the bovine luteal transcriptome during spontaneous luteal regressionâ€. Biology of Reproduction, 2021, 105, 1016-1029.	2.7	8
7	Reduced Endothelin-2 and Hypoxic Signaling Pathways in Granulosa-Lutein Cells of PCOS Women. International Journal of Molecular Sciences, 2021, 22, 8216.	4.1	5
8	The cAMP pathway promotes sirtuin-1 expression in human granulosa-lutein cells. Reproductive Biology, 2020, 20, 273-281.	1.9	7
9	Pentraxin-3 mediates prosurvival actions of interferon tau in bovine luteinized granulosa cells. Reproduction, 2020, 160, 603-612.	2.6	2
10	Interferon-Tau Exerts Direct Prosurvival and Antiapoptotic Actions in Luteinized Bovine Granulosa Cells. Scientific Reports, 2019, 9, 14682.	3.3	12
11	Corpus Luteum Formation. , 2019, , 255-267.		2
12	Thrombospondin-1 at the crossroads of corpus luteum fate decisions. Reproduction, 2019, 157, R73-R83.	2.6	15
13	Fibroblast growth factor-2 and transforming growth factor-beta1 oppositely regulate miR-221 that targets thrombospondin-1 in bovine luteal endothelial cells. Biology of Reproduction, 2018, 98, 366-375.	2.7	21
14	miR-210 and GPD1L regulate EDN2 in primary and immortalized human granulosa-lutein cells. Reproduction, 2018, 155, 197-205.	2.6	11
15	Mechanisms for rescue of corpus luteum during pregnancy: gene expression in bovine corpus luteum following intrauterine pulses of prostaglandins E1 and F2αâ€. Biology of Reproduction, 2018, 98, 465-479.	2.7	26
16	The cAMP-EPAC Pathway Mediates PGE2-Induced FGF2 in Bovine Granulosa Cells. Endocrinology, 2018, 159, 3482-3491.	2.8	14
17	Genomic profiling of bovine corpus luteum maturation. PLoS ONE, 2018, 13, e0194456.	2.5	34
18	Interferon-tau promotes luteal endothelial cell survival and inhibits specific luteolytic genes in bovine corpus luteum. Reproduction, 2017, 154, 559-568.	2.6	22

#	Article	IF	CITATIONS
19	Luteolysis in Ruminants: Past Concepts, New Insights, and Persisting Challenges. , 2017, , 159-182.		8
20	Thrombospondin-1 Affects Bovine Luteal Function via Transforming Growth Factor-Beta1-Dependent and Independent Actions1. Biology of Reproduction, 2016, 94, 25.	2.7	22
21	Regulation of ovulatory genes in bovine granulosa cells: lessons from siRNA silencing of PTGS2. Reproduction, 2015, 149, 21-29.	2.6	17
22	HIF1A-dependent increase in endothelin 2 levels in granulosa cells: role of hypoxia, LH/cAMP, and reactive oxygen species. Reproduction, 2015, 149, 11-20.	2.6	28
23	Endothelin-converting enzyme is a plausible target gene for hypoxia-inducible factor. Kidney International, 2015, 87, 761-770.	5.2	20
24	Functions and Transcriptional Regulation of Thrombospondins and Their Interrelationship with Fibroblast Growth Factor-2 in Bovine Luteal Cells1. Biology of Reproduction, 2014, 91, 58.	2.7	32
25	Ever-changing cell interactions during the life span of the corpus luteum: Relevance to luteal regression. Reproductive Biology, 2014, 14, 75-82.	1.9	22
26	The role of hypoxia-induced genes in ovarian angiogenesis. Reproduction, Fertility and Development, 2013, 25, 343.	0.4	41
27	Regulation of Angiogenesis-Related Prostaglandin F2alpha-Induced Genes in the Bovine Corpus Luteum1. Biology of Reproduction, 2012, 86, 92.	2.7	68
28	Why two endothelins and two receptors for ovulation and luteal regulation?. Life Sciences, 2012, 91, 501-506.	4.3	18
29	Altered endothelin expression in granulosa-lutein cells of women with polycystic ovary syndrome. Life Sciences, 2012, 91, 703-709.	4.3	14
30	Modeling of Human Prokineticin Receptors: Interactions with Novel Small-Molecule Binders and Potential Off-Target Drugs. PLoS ONE, 2011, 6, e27990.	2.5	33
31	Deciphering the luteal transcriptome: potential mechanisms mediating stage-specific luteolytic response of the corpus luteum to prostaglandin F _{2α} . Physiological Genomics, 2011, 43, 447-456.	2.3	66
32	Induction of Endothelin-2 Expression by Luteinizing Hormone and Hypoxia: Possible Role in Bovine Corpus Luteum Formation. Endocrinology, 2010, 151, 1914-1922.	2.8	57
33	Induction of Heparanase in Bovine Granulosa Cells by Luteinizing Hormone: Possible Role during the Ovulatory Process. Endocrinology, 2009, 150, 413-421.	2.8	20
34	Small Interfering RNA Molecules Targeting Endothelin-Converting Enzyme-1 Inhibit Endothelin-1 Synthesis and the Invasive Phenotype of Ovarian Carcinoma Cells. Cancer Research, 2008, 68, 9265-9273.	0.9	41
35	Expression Pattern of Prokineticin 1 and Its Receptors in Bovine Ovaries During the Estrous Cycle: Involvement in Corpus Luteum Regression and Follicular Atresia. Biology of Reproduction, 2007, 76, 749-758.	2.7	23
36	The ovarian endothelin network: an evolving story. Trends in Endocrinology and Metabolism, 2007, 18, 379-385.	7.1	46

#	Article	IF	CITATIONS
37	Differential Expression of Prokineticin Receptors by Endothelial Cells Derived from Different Vascular Beds: a Physiological Basis for Distinct Endothelial Function. Cellular Physiology and Biochemistry, 2006, 18, 315-326.	1.6	21
38	Identification of a novel alternatively spliced variant endothelin converting enzyme-1 lacking a transmembrane domain. Experimental Biology and Medicine, 2006, 231, 723-8.	2.4	5
39	Unique expression and regulatory mechanisms of EC-VEGF/prokineticin-1 and its receptors in the corpus luteum. Annals of Anatomy, 2005, 187, 529-537.	1.9	24
40	Endothelin-converting Enzyme-1, Abundance of Isoforms a-d and Identification of a Novel Alternatively Spliced Variant Lacking a Transmembrane Domain. Journal of Biological Chemistry, 2005, 280, 40867-40874.	3.4	25
41	The yin and yang of corpus luteum-derived endothelial cells: Balancing life and death. Domestic Animal Endocrinology, 2005, 29, 318-328.	1.6	34
42	Characterization of endothelin-1 and nitric oxide generating systems in corpus luteum-derived endothelial cells. Reproduction, 2004, 128, 463-473.	2.6	54
43	Heterodimerization of Endothelin-converting Enzyme-1 Isoforms Regulates the Subcellular Distribution of This Metalloprotease. Journal of Biological Chemistry, 2003, 278, 545-555.	3.4	71
44	Hormonal Regulation and Cell-Specific Expression of Endothelin-Converting Enzyme 1 Isoforms in Bovine Ovarian Endothelial and Steroidogenic Cells1. Biology of Reproduction, 2003, 68, 1361-1368.	2.7	24
45	Presence and Regulation of Endocrine Gland Vascular Endothelial Growth Factor/Prokineticin-1 and Its Receptors in Ovarian Cells. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 3700-3707.	3.6	67
46	Endothelin-1 receptors and biosynthesis in the corpus luteum: Molecular and physiological implications. Domestic Animal Endocrinology, 2002, 23, 287-298.	1.6	30
47	Distinct Cellular Localization and Regulation of Endothelin-1 and Endothelin-Converting Enzyme-1 Expression in the Bovine Corpus Luteum: Implications for Luteolysis. Endocrinology, 2001, 142, 5254-5260.	2.8	42
48	Role of Tumor Necrosis Factor α and Its Type I Receptor in Luteal Regression: Induction of Programmed Cell Death in Bovine Corpus Luteum-Derived Endothelial Cells. Biology of Reproduction, 2000, 63, 1905-1912.	2.7	107
49	Administration of Prostaglandin F2α During the Early Bovine Luteal Phase Does Not Alter the Expression of ET-1 and of Its Type A Receptor: A Possible Cause for Corpus Luteum Refractoriness. Biology of Reproduction, 2000, 63, 377-382.	2.7	92
50	Hormonal Regulation of Messenger Ribonucleic Acid Expression for Steroidogenic Factor-1, Steroidogenic Acute Regulatory Protein, and Cytochrome P450 Side-Chain Cleavage in Bovine Luteal Cells. Biology of Reproduction, 1999, 60, 628-634.	2.7	77
51	Characterization and Regulation of Type A Endothelin Receptor Gene Expression in Bovine Luteal Cell Types. Endocrinology, 1999, 140, 2110-2116.	2.8	13
52	LH receptor mRNA and cytochrome P450 side-chain cleavage expression in bovine theca and granulosa cells luteinized by LH or forskolin. Domestic Animal Endocrinology, 1998, 15, 103-114.	1.6	24
53	Characterization of Messenger Ribonucleic Acid Expression for Prostaglandin F2α and Luteinizing Hormone Receptors in Various Bovine Luteal Cell Types1. Biology of Reproduction, 1998, 58, 849-856.	2.7	86
54	Role of Endothelial Cells in the Steroidogenic Activity of the Bovine Corpus Luteum. Seminars in Reproductive Medicine, 1997, 15, 371-382.	1.1	10

#	Article	IF	CITATIONS
55	Luteotrophic and Luteolytic Interactions between Bovine Small and Large Luteal-Like Cells and Endothelial Cells1. Biology of Reproduction, 1995, 52, 954-962.	2.7	73
56	Growth Hormone (GH) Stimulates Insulin-Like Growth Factor-I (IGF-I) and IGF-Binding Protein (IGFBP)-2 Gene Expression in Spleens of Juvenile Rats. Hormone and Metabolic Research, 1994, 26, 363-366.	1.5	11
57	Role of CH and IGF-I in the regulation of IGF-I, IGF-I receptor and IGF binding protein gene expression in the rat spleen. Regulatory Peptides, 1994, 52, 215-226.	1.9	7
58	Effects of season, incubation temperature and cell age on progesterone and prostaglandin F2α production in bovine luteal cells. Animal Reproduction Science, 1993, 32, 27-40.	1.5	23
59	Biosynthesis and Release of Oxytocin by Granulosa Cells Derived from Preovulatory Bovine Follicles: Effects of Forskolin and Insulin-like Growth Factor-I1. Biology of Reproduction, 1992, 46, 715-720.	2.7	14
60	Steroidogenic Enzyme Content and Progesterone Induction by Cyclic Adenosine 3′,5′-Monophosphate-Generating Agents and Prostaglandin F2α in Bovine Theca and Granulosa Cells Luteinized in Vitro1. Biology of Reproduction, 1992, 46, 786-792.	2.7	33
61	Characterization of insulin-like growth factor binding proteins secreted by cultured bovine theca and granulosa cells. Molecular and Cellular Endocrinology, 1992, 90, 39-46.	3.2	7
62	In Vitro Differentiation of Bovine Theca and Granulosa Cells into Small and Large Luteal-like Cells: Morphological and Functional Characteristics1. Biology of Reproduction, 1990, 43, 913-921.	2.7	143
63	A differential effect of trypsin on pituitary gonadotropin-releasing hormone receptors from intact and ovariectomized rats. Evidence for the existence of two distinct receptor populations. FEBS Journal, 1984, 140, 191-197.	0.2	18
64	Receptor-mediated internalization of LHRH antagonists by pituitary cells. Molecular and Cellular Endocrinology, 1983, 30, 291-301.	3.2	31
65	Variations in the number of pituitary LHRH receptors correlated with altered responsiveness to LHRH. Life Sciences, 1982, 30, 535-541.	4.3	12
66	INTRACELLULAR DISTRIBUTION OF CATHEPSIN D IN RAT CORPORA LUTEA IN RELATION TO REPRODUCTIVE STATE AND THE ACTION OF PROSTAGLANDIN F21± AND PROLACTIN. Journal of Endocrinology, 1977, 75, 317-NP.	2.6	13
67	On the Role of Tryptophan in Luteinizing-Hormone-Releasing Hormone (Luliberin). FEBS Journal, 1977, 79, 269-273.	0.2	3