Hyun Jae Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5615045/publications.pdf

Version: 2024-02-01

47004 8,549 415 47 citations h-index papers

g-index 420 420 420 5811 docs citations times ranked citing authors all docs

60616

81

#	Article	IF	CITATIONS
1	Rapid and selective green laser activation of InGaZnO thin-film transistors through metal absorption. Journal of Information Display, 2022, 23, 33-43.	4.0	4
2	Skin-conformable photoplethysmogram sensors for energy-efficient always-on cardiovascular monitoring systems. Nano Energy, 2022, 92, 106773.	16.0	16
3	Facile Polydimethylsiloxane Treatment of Indium Gallium Zinc Oxide Phototransistor for Visible Lightâ€Based Multilevel Photomemory. Advanced Optical Materials, 2022, 10, .	7.3	7
4	Image quality enhancement in variable-refresh-rate AMOLED displays using a variable initial voltage compensation scheme. Scientific Reports, 2022, 12, 5977.	3.3	2
5	Performance Improvement of Self-Aligned Coplanar Amorphous Indium–Gallium–Zinc Oxide Thin-Film Transistors by Boron Implantation. ACS Applied Electronic Materials, 2022, 4, 2372-2379.	4.3	7
6	Polyimide-Doped Indium–Gallium–Zinc Oxide-Based Transparent and Flexible Phototransistor for Visible Light Detection. ACS Applied Materials & Detection. Detection Detection	8.0	6
7	Early Career Forum in <i>ACS Applied Electronic Materials</i> . ACS Applied Electronic Materials, 2022, 4, 1368-1368.	4.3	0
8	In-plane optical and electrical anisotropy in low-symmetry layered GeS microribbons. NPG Asia Materials, 2022, 14, .	7.9	5
9	Realization of Enhanced Longâ€Term Visual Memory for Indium–Gallium–Zinc Oxideâ€Based Optical Synaptic Transistor. Advanced Optical Materials, 2022, 10, .	7.3	9
10	Virtual Special Issue: Halide Perovskite Materials and Applications. ACS Applied Energy Materials, 2022, 5, 7889-7890.	5.1	0
11	Mechanically Durable Organic/High- <i>k</i> Inorganic Hybrid Gate Dielectrics Enabled by Plasma-Polymerization of PTFE for Flexible Electronics. ACS Applied Materials & Interfaces, 2022, 14, 28085-28096.	8.0	5
12	Virtual Special Issue: Halide Perovskite Materials and Applications. ACS Applied Electronic Materials, 2022, 4, 3325-3326.	4.3	0
13	9â€3: <i>Student Paper:</i> Widening the Wavelength Absorption Range of Indium Gallium Zinc Oxide Phototransistors through the Capping layer. Digest of Technical Papers SID International Symposium, 2022, 53, 86-89.	0.3	0
14	14â€2: <i>Student Paper:</i> Enhanced Electrical Characteristics of Lowâ€Temperature Processed Inâ€Gaâ€Znâ€Thinâ€Film Transistors with Oxygen Scavenging Layer. Digest of Technical Papers SID International Symposium, 2022, 53, 145-146.	€O 0.3	0
15	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
16	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
17	Vertically Graded Oxygen Deficiency for Improving Electrical Characteristics and Stability of Indium Gallium Zinc Oxide Thin-Film Transistors. ACS Applied Materials & Diterfaces, 2021, 13, 4110-4116.	8.0	24
18	Indium oxide nanomesh-based electrolyte-gated synaptic transistors. Journal of Information Display, 2021, 22, 179-185.	4.0	5

#	Article	IF	Citations
19	Hydrogen Barriers Based on Chemical Trapping Using Chemically Modulated Al ₂ O ₃ Grown by Atomic Layer Deposition for InGaZnO Thin-Film Transistors. ACS Applied Materials & Deposition for InGaZnO Thin-Film Transistors.	8.0	15
20	Enhancement of picture quality on ultra-low brightness by optimizing the electrical potential required for OLED charging in the AMOLED displays. Journal of Information Display, 2021, 22, 275-284.	4.0	6
21	A Review of Phototransistors Using Metal Oxide Semiconductors: Research Progress and Future Directions. Advanced Materials, 2021, 33, e2006091.	21.0	67
22	Modulation of the Al/Cu ₂ O Schottky Barrier Height for p-Type Oxide TFTs Using a Polyethylenimine Interlayer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31077-31085.	8.0	12
23	Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nature Communications, 2021, 12, 3559.	12.8	94
24	Multifunctional Oxygen Scavenger Layer for High-Performance Oxide Thin-Film Transistors with Low-Temperature Processing. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31816-31824.	8.0	22
25	Flexible Artificial Synapses with a Biocompatible Maltose–Ascorbic Acid Electrolyte Gate for Neuromorphic Computing. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34597-34604.	8.0	19
26	Novel Method for Fabricating Visible-Light Phototransistors Based on a Homojunction-Porous IGZO Thin Film Using Mechano-Chemical Treatment. ACS Applied Materials & Eamp; Interfaces, 2021, 13, 35981-35989.	8.0	11
27	22.1: Invited Paper: Metal Oxide Semiconductor Phototransistors for Detecting Visible Light with Various Absorption Layers. Digest of Technical Papers SID International Symposium, 2021, 52, 293-293.	0.3	0
28	A Facile Method Based on Oxide Semiconductor Reduction for Controlling the Photoresponse Characteristic of Flexible and Transparent Optoelectronic Devices. Advanced Optical Materials, 2021, 9, 2100725.	7.3	12
29	Neuromorphic Active Pixel Image Sensor Array for Visual Memory. ACS Nano, 2021, 15, 15362-15370.	14.6	52
30	Biocompatible and Biodegradable Neuromorphic Device Based on Hyaluronic Acid for Implantable Bioelectronics. Advanced Functional Materials, 2021, 31, 2107074.	14.9	23
31	Photo-induced Reactive Oxygen Species Activation for Amorphous Indium–Gallium–Zinc Oxide Thin-Film Transistors Using Sodium Hypochlorite. ACS Applied Materials & Interfaces, 2021, 13, 44531-44540.	8.0	8
32	Forum on Wearable and Biodegradable Sensors. ACS Applied Bio Materials, 2021, 4, 1-2.	4.6	3
33	Forum on Wearable and Biodegradable Sensors. ACS Applied Electronic Materials, 2021, 3, 1-2.	4.3	2
34	A Review of Phototransistors Using Metal Oxide Semiconductors: Research Progress and Future Directions (Adv. Mater. 47/2021). Advanced Materials, 2021, 33, 2170372.	21.0	1
35	Low-thermal-budget (300 °C) ferroelectric TiN/Hf0.5Zr0.5O2/TiN capacitors realized using high-pressure annealing. Applied Physics Letters, 2021, 119, .	3.3	16
36	A Review of Lowâ€Temperature Solutionâ€Processed Metal Oxide Thinâ€Film Transistors for Flexible Electronics. Advanced Functional Materials, 2020, 30, 1904632.	14.9	265

#	Article	IF	CITATIONS
37	Flexible and Waterproof Resistive Randomâ€Access Memory Based on Nitrocellulose for Skinâ€Attachable Wearable Devices. Advanced Functional Materials, 2020, 30, 1907437.	14.9	44
38	Improving the performances of oxide phototransistors using a mechanochemically treated porous visible-light absorption layer. Journal of Information Display, 2020, 21, 217-222.	4.0	6
39	Multifunctional, Room-Temperature Processable, Heterogeneous Organic Passivation Layer for Oxide Semiconductor Thin-Film Transistors. ACS Applied Materials & Employer Semiconductor Thin-Film Transistors.	8.0	27
40	Fabrication of indium gallium zinc oxide phototransistors <i>via</i> oxide-mesh insertion for visible light detection. Journal of Materials Chemistry C, 2020, 8, 165-172.	5.5	19
41	Pâ€16: Homojunction Indium–Gallium–Zinc Oxide Thinâ€Film Transistors by Selective Simultaneous UV and Thermal Treatment. Digest of Technical Papers SID International Symposium, 2020, 51, 1369-1371.	0.3	O
42	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
43	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	O
44	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
45	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	O
46	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
47	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	O
48	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
49	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
50	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
51	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
52	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
53	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
54	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	O

#	Article	IF	Citations
55	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	O
56	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
57	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
58	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
59	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
60	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
61	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	0
62	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
63	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
64	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
65	High Photosensitive Indium–Gallium–Zinc Oxide Thin-Film Phototransistor with a Selenium Capping Layer for Visible-Light Detection. ACS Applied Materials & Interfaces, 2020, 12, 10673-10680.	8.0	42
66	Pâ€7: Improvement of Electrical Stability of Inâ€Gaâ€Znâ€O Thinâ€film Transistors by Incorporation of Polytetrafluoroethylene in the Back Channel Region. Digest of Technical Papers SID International Symposium, 2020, 51, 1334-1337.	0.3	0
67	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
68	Enhancement of electrical characteristics and stability of self-patterned In–Zn–O thin-film transistors based on photosensitive precursors. Scientific Reports, 2020, 10, 18853.	3.3	6
69	Simultaneously Defined Semiconducting Channel Layer Using Electrohydrodynamic Jet Printing of a Passivation Layer for Oxide Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 39705-39712.	8.0	19
70	Gallium Doping Effects for Improving Switching Performance of p-Type Copper(I) Oxide Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38350-38356.	8.0	38
71	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
72	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	0

#	Article	IF	CITATIONS
73	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
74	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
75	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	O
76	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	0
77	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
78	Confronting Racism in Chemistry Journals. Energy & Energy & 2020, 34, 7771-7773.	5.1	0
79	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
80	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
81	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
82	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
83	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
84	Switching Enhancement via a Back-Channel Phase-Controlling Layer for p-Type Copper Oxide Thin-Film Transistors. ACS Applied Materials & Interfaces, 2020, 12, 24929-24939.	8.0	27
85	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
86	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
87	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Materials & Samp; Interfaces, 2020, 12, 20147-20148.	8.0	5
88	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
89	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
90	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0

#	Article	IF	CITATIONS
91	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
92	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
93	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
94	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	0
95	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
96	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	0
97	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
98	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
99	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
100	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	0
101	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	0
102	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
103	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
104	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
105	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
106	Confronting Racism in Chemistry Journals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28925-28927.	8.0	13
107	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
108	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2

#	Article	IF	CITATIONS
109	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
110	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
111	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
112	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
113	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
114	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
115	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
116	Mechanochemical and Thermal Treatment for Surface Functionalization to Reduce the Activation Temperature of In-Ga-Zn-O Thin-film Transistors. ACS Applied Materials & Interfaces, 2020, 12, 19123-19129.	8.0	18
117	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
118	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
119	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
120	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
121	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
122	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
123	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0
124	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
125	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
126	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0

#	Article	IF	Citations
127	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
128	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
129	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
130	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	0
131	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
132	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
133	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
134	Improvement of the stability and optoelectronic characteristics of molybdenum disulfide thin-film transistors by applying a nitrocellulose passivation layer. Journal of Information Display, 2020, 21, 123-130.	4.0	9
135	Young Investigator Forum in ACS Applied Electronic Materials. ACS Applied Electronic Materials, 2020, 2, 1-1.	4.3	0
136	Near-field sub-diffraction photolithography with an elastomeric photomask. Nature Communications, 2020, 11, 805.	12.8	36
137	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
138	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
139	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
140	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
141	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Biomacromolecules, 2020, 21, 1966-1967.	5.4	0
142	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0
143	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
144	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0

#	Article	IF	CITATIONS
145	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	O
146	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
147	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 2817-2818.	3.0	1
148	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
149	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
150	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
151	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
152	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5 . 4	0
153	Highâ€performance vacuumâ€processed metal oxide thinâ€film transistors: A review of recent developments. Journal of the Society for Information Display, 2020, 28, 591-622.	2.1	28
154	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
155	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
156	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
157	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
158	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
159	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
160	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3. 5	1
161	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
162	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0

#	Article	IF	CITATIONS
163	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	O
164	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
165	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
166	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
167	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
168	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
169	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
170	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
171	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3 . 5	1
172	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
173	Confronting Racism in Chemistry Journals. Environmental Science & Environmenta	10.0	0
174	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
175	Balanced Performance Enhancements of aâ€InGaZnO Thin Film Transistors by Using Allâ€Amorphous Dielectric Multilayers Sandwiching Highâ€k CaCu 3 Ti 4 O 12. Advanced Electronic Materials, 2019, 5, 1900322.	5.1	5
176	Artificially Fabricated Subgap States for Visible-Light Absorption in Indium–Gallium–Zinc Oxide Phototransistor with Solution-Processed Oxide Absorption Layer. ACS Applied Materials & Camp; Interfaces, 2019, 11, 38964-38972.	8.0	32
177	Glucose-based resistive random access memory for transient electronics. Journal of Information Display, 2019, 20, 231-237.	4.0	12
178	Introducing <i>ACS Applied Electronic Materials</i> . ACS Applied Electronic Materials, 2019, 1, 1-1.	4.3	2
179	9â€4: Lateâ€News Paper: Alleviation of Recoverable Residual Image Phenomenon of Flexible Organic Lightâ€emitting Diode Display. Digest of Technical Papers SID International Symposium, 2019, 50, 105-108.	0.3	5
180	Pâ€18: Improving Switching Characteristics of pâ€type Copper Oxide Thinâ€film Transistors by Germanium Oxide Passivation through Reactive Sputtering. Digest of Technical Papers SID International Symposium, 2019, 50, 1279-1282.	0.3	1

#	Article	IF	CITATIONS
181	Pâ€20: The Voltageâ€based Modulation Technique Using Potassium Superoxide for Amorphous Indiumâ€Galliumâ€Zinc Oxide Thinâ€Film Transistors. Digest of Technical Papers SID International Symposium, 2019, 50, 1286-1289.	0.3	0
182	Pâ€21: Selective modulation of electrical characteristics for transparent conducting oxides by electroâ€hydroâ€dynamic printing technology. Digest of Technical Papers SID International Symposium, 2019, 50, 1290-1293.	0.3	0
183	Pâ€23: Enhancement in the Mobility and the Stability of Solutionâ€Processed Zincâ€Tin Oxide Thinâ€Film Transistors Using Alkali Metal Superoxide. Digest of Technical Papers SID International Symposium, 2019, 50, 1298-1301.	0.3	O
184	Analysis of Recoverable Residual Image Characteristics of Flexible Organic Light-Emitting Diode Displays Using Polyimide Substrates. IEEE Electron Device Letters, 2019, 40, 1108-1111.	3.9	20
185	Simulation model for electron irradiated IGZO thin film transistors. Journal of Semiconductors, 2018, 39, 022002.	3.7	2
186	Effect of Static and Rotating Magnetic Fields on Low-Temperature Fabrication of InGaZnO Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 16613-16622.	8.0	15
187	Low-temperature fabrication of solution-processed hafnium oxide gate insulator films using a thermally purified solution process. Journal of Materials Chemistry C, 2018, 6, 4928-4935.	5.5	31
188	Facile fabrication of wire-type indium gallium zinc oxide thin-film transistors applicable to ultrasensitive flexible sensors. Scientific Reports, 2018, 8, 5546.	3.3	23
189	Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7223-7230.	8.0	45
190	Arithmetic and experimental approach to effect of visible light absorption on silicone plate in high-power LED module. International Journal of Heat and Mass Transfer, 2018, 119, 400-407.	4.8	O
191	Nitrocellulose-based collodion gate insulator for amorphous indium zinc gallium oxide thin-film transistors. Journal of Information Display, 2018, 19, 39-43.	4.0	26
192	Boosting Visible Light Absorption of Metal-Oxide-Based Phototransistors via Heterogeneous In–Ga–Zn–O and CH ₃ NH ₃ Pbl ₃ Films. ACS Applied Materials & Los Applied	8.0	45
193	All-sputtered oxide thin-film transistors fabricated at 150 \hat{A}° C using simultaneous ultraviolet and thermal treatment. Journal of Materials Chemistry C, 2018, 6, 249-256.	5.5	17
194	(Invited) Oxide TFT Fabrication with Various Low Temperature Techniques. ECS Transactions, 2018, 86, 95-104.	0.5	0
195	Dual-Functional Superoxide Precursor To Improve the Electrical Characteristics of Oxide Thin Film Transistors. ACS Applied Materials & Electrical Characteristics of Oxide Thin Film Transistors. ACS Applied Materials & Electrical Characteristics of Oxide Thin Film Transistors. ACS Applied Materials & Electrical Characteristics of Oxide Thin Film Transistors.	8.0	9
196	Bottom-Metal Induced Leakage Current of LTPS Diode for ESD Protection. ECS Transactions, 2018, 86, 189-192.	0.5	0
197	High-Throughput Open-Air Plasma Activation of Metal-Oxide Thin Films with Low Thermal Budget. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37223-37232.	8.0	13
198	Anomalous Kink Effect Induced by Bottom-Shield-Metal in LTPS TFTs on Plastic Substrates. IEEE Electron Device Letters, 2018, , 1-1.	3.9	8

#	Article	IF	CITATIONS
199	Boosting Modulation of Oxide Semiconductors via Voltage-Based Ambi-Ionic Migration. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37216-37222.	8.0	5
200	Plasma Polymerization Enabled Polymer/Metal–Oxide Hybrid Semiconductors for Wearable Electronics. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37207-37215.	8.0	19
201	Enhancement of Switching Characteristic for p-Type Oxide Semiconductors Using Hypochlorous Acid. ACS Applied Materials & Date: ACS ACS Applied Materials & Date: ACS	8.0	22
202	A selectively processible instant glue passivation layer for indium gallium zinc oxide thin-film transistors fabricated at low temperature. Journal of Materials Chemistry C, 2018, 6, 6187-6193.	5.5	23
203	Analysis of the Bipolar Resistive Switching Behavior of a Biocompatible Glucose Film for Resistive Random Access Memory. Advanced Materials, 2018, 30, e1800722.	21.0	85
204	Pâ€22: Fabrication of Oxideâ€Based Phototransistors for Visible Light Detection via Nanowire Interfaces. Digest of Technical Papers SID International Symposium, 2018, 49, 1260-1263.	0.3	0
205	Pâ€23: Fabrication of Ecoâ€Friendly Solutionâ€Processed Indium Zinc Oxide Thinâ€Film Transistors through Recycling Based on Photocatalytic Reactions of TiO ₂ . Digest of Technical Papers SID International Symposium, 2018, 49, 1264-1267.	0.3	2
206	Fabrication and optoelectronic characterisation of lanthanide- and metal-ion-doped DNA thin films. Journal Physics D: Applied Physics, 2018, 51, 285301.	2.8	8
207	Improvement in Electrical Characteristics of Eco-friendly Indium Zinc Oxide Thin-Film Transistors by Photocatalytic Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 18837-18844.	8.0	6
208	Pâ€195: <i>Lateâ€News Poster:</i> Indium Gallium Zinc Oxide Phototransistor for Visible Light Detection Using Hydrogen Plasma Doping. Digest of Technical Papers SID International Symposium, 2018, 49, 1280-1283.	0.3	1
209	P-197: Late-News Poster: Selective Laser Activation Process for Indium Gallium Zinc Oxide Thin Film Transistors. Digest of Technical Papers SID International Symposium, 2018, 49, 1288-1291.	0.3	1
210	Bottom-Metal Induced Leakage Current of LTPS Diode for ESD Protection. ECS Meeting Abstracts, 2018,	0.0	0
211	(Invited) Oxide TFT Fabrication with Various Low Temperature Techniques. ECS Meeting Abstracts, 2018,	0.0	0
212	Resistive Switching Properties through Iodine Migrations of a Hybrid Perovskite Insulating Layer. Advanced Materials Interfaces, 2017, 4, 1601035.	3.7	75
213	A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique. Scientific Reports, 2017, 7, 43216.	3.3	31
214	14â€4L: <i>Lateâ€News Paper</i> : Selfâ€Pattern Process of InZnO Thinâ€Film Transistors using Photosensitive Precursors. Digest of Technical Papers SID International Symposium, 2017, 48, 180-182.	0.3	6
215	Pâ€222L: Kim Lateâ€News Poster: Fabrication of Nitrocellulose based Organic Material as a Gate Dielectric Layer for Oxide Thin Film Transistor. Digest of Technical Papers SID International Symposium, 2017, 48, 1356-1358.	0.3	0
216	Pâ€221L: <i>Lateâ€News Poster</i> : Indium Gallium Zinc Oxide based Phototransistor for Visible Light Detection by Stacking Solution Processed Defective Oxide Layer. Digest of Technical Papers SID International Symposium, 2017, 48, 1353-1355.	0.3	1

#	Article	IF	CITATIONS
217	Low-temperature activation under $150 \hat{A}^{\circ} C$ for amorphous IGZO TFTs using voltage bias. Journal of Information Display, 2017, 18, 131-135.	4.0	21
218	Pâ€25: The Analysis of Kink Effect in LTPS TFTs with LDD and Source Contacted Bottom Shield Metal. Digest of Technical Papers SID International Symposium, 2017, 48, 1318-1322.	0.3	0
219	Improvement of Electrical Characteristics and Stability of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Using Nitrocellulose Passivation Layer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13278-13285.	8.0	45
220	Label-Free Flexible DNA Biosensing System Using Low-Temperature Solution-Processed In-Zn-O Thin-Film Transistors. IEEE Transactions on Electron Devices, 2017, 64, 515-520.	3.0	7
221	The self-activated radical doping effects on the catalyzed surface of amorphous metal oxide films. Scientific Reports, 2017, 7, 12469.	3.3	22
222	Silicon Cations Intermixed Indium Zinc Oxide Interface for High-Performance Thin-Film Transistors Using a Solution Process. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29849-29856.	8.0	14
223	Low-temperature fabrication of an HfO2 passivation layer for amorphous indium–gallium–zinc oxide thin film transistors using a solution process. Scientific Reports, 2017, 7, 16265.	3.3	47
224	Structural Engineering of Metal-Mesh Structure Applicable for Transparent Electrodes Fabricated by Self-Formable Cracked Template. Nanomaterials, 2017, 7, 214.	4.1	15
225	P-13: Influence of Oxide Thinning by Selective Etching Process on Solution Processed Indium Zinc Oxide Thin Film Transistor. Digest of Technical Papers SID International Symposium, 2016, 47, 1165-1167.	0.3	0
226	47-3: <i>Invited Paper</i> : Various Low-Temperature Activation Methods for IGZO TFTs in Flexible Displays. Digest of Technical Papers SID International Symposium, 2016, 47, 637-640.	0.3	2
227	Flexible carbon nanofiber electrodes for a lead zirconate titanate nanogenerator. RSC Advances, 2016, 6, 64441-64445.	3.6	11
228	Influence of Annealing on Solution-Processed Indium Oxide Thin-Film Transistors Under Ambient Air and Wet Conditions. IEEE Transactions on Electron Devices, 2016, 63, 3558-3561.	3.0	13
229	Electric Field-aided Selective Activation for Indium-Gallium-Zinc-Oxide Thin Film Transistors. Scientific Reports, 2016, 6, 35044.	3.3	20
230	A review of multi-stacked active-layer structures for solution-processed oxide semiconductor thin-film transistors. Journal of Information Display, 2016, 17, 93-101.	4.0	75
231	Free-electron creation at the $60 \hat{A}^\circ$ twin boundary in Bi2Te3. Nature Communications, 2016, 7, 12449.	12.8	59
232	Activation of sputter-processed indium–gallium–zinc oxide films by simultaneous ultraviolet and thermal treatments. Scientific Reports, 2016, 6, 21869.	3.3	75
233	High-pressure Gas Activation for Amorphous Indium-Gallium-Zinc-Oxide Thin-Film Transistors at 100 °C. Scientific Reports, 2016, 6, 23039.	3.3	76
234	P-5: A Simple Dipping Method to Improve Positive Bias Stress Stability of In-Ga-Zn-O Thin-Film Transistors using Hydrogen Peroxide. Digest of Technical Papers SID International Symposium, 2016, 47, 1136-1139.	0.3	0

#	Article	IF	CITATIONS
235	Modified Stoichiometry in Homogeneous Indium–Zinc Oxide System as Vertically Graded Oxygen Deficiencies by Controlling Redox Reactions. Advanced Materials Interfaces, 2016, 3, 1500606.	3.7	7
236	Reduction of activation temperature at $150 \hat{A}^{\circ} \text{C}$ for IGZO films with improved electrical performance via UV-thermal treatment. Journal of Information Display, 2016, 17, 73-78.	4.0	33
237	Effects of structural modification via high-pressure annealing on solution-processed InGaO films and thin-film transistors. Journal Physics D: Applied Physics, 2016, 49, 075112.	2.8	15
238	Interface location-controlled indium gallium zinc oxide thin-film transistors using a solution process. Journal Physics D: Applied Physics, 2016, 49, 085301.	2.8	3
239	Hall transport of divalent metal ion modified DNA lattices. Applied Physics Letters, 2015, 106, 263702.	3.3	12
240	Improvement of electrical characteristics of solution-processed InZnO thin-film transistor by vacuum annealing and nitrogen pressure treatment at 200 \hat{A}° C. Japanese Journal of Applied Physics, 2015, 54, 126502.	1.5	7
241	Pâ€155L: <i>Lateâ€News Poster</i> : Low Temperature Activation of Inâ€Gaâ€Znâ€O Thin Film Transistor using Hi Pressure Annealing. Digest of Technical Papers SID International Symposium, 2015, 46, 1231-1233.	igh 0.3	O
242	57.1: High-Performance Poly-Si TFTs Using Pressure-Induced Nucleation Technology. Digest of Technical Papers SID International Symposium, 2015, 46, 850-852.	0.3	1
243	Pâ€152L: <i>Lateâ€News Poster</i> : Simple Method for Lowâ€Temperature Processed Inâ€Gaâ€Znâ€O Thinâ€Filr Transistors by Vertical Diffusion Technique. Digest of Technical Papers SID International Symposium, 2015, 46, 1221-1223.	n 0.3	O
244	Pâ€25: Enhancement in Positive Bias Stress Stability of Inâ€Gaâ€Znâ€O Thinâ€Film Transistors with Vertically Gradedâ€Oxygenâ€Vacancy Active Layer. Digest of Technical Papers SID International Symposium, 2015, 46, 1209-1212.	0.3	0
245	Pâ€153L: <i>Lateâ€News Poster</i> : Interface Location Controlled Dual Stacked Solutionâ€Processed Inâ€Gaâ€Znâ€O Thin Film Transistors for Improved Electrical Performances. Digest of Technical Papers SID International Symposium, 2015, 46, 1224-1227.	0.3	O
246	Optical Band Gap and Hall Transport Characteristics of Lanthanide-Ion-Modified DNA Crystals. Journal of Physical Chemistry C, 2015, 119, 14443-14449.	3.1	24
247	Sn doping in thermoelectric Bi2Te3 films by metal-organic chemical vapor deposition. Applied Surface Science, 2015, 353, 232-237.	6.1	18
248	Thermoelectric Properties of Sn-Doped Bi0.4Sb1.6Te3 Thin Films. Journal of Electronic Materials, 2015, 44, 1573-1578.	2.2	3
249	Highly reliable switching via phase transition using hydrogen peroxide in homogeneous and multi-layered GaZnOx-based resistive random access memory devices. Chemical Communications, 2015, 51, 9173-9176.	4.1	7
250	Inâ€Depth Studies on Rapid Photochemical Activation of Various Sol–Gel Metal Oxide Films for Flexible Transparent Electronics. Advanced Functional Materials, 2015, 25, 2807-2815.	14.9	172
251	Hydroxyl radical-assisted decomposition and oxidation in solution-processed indium oxide thin-film transistors. Journal of Materials Chemistry C, 2015, 3, 7499-7505.	5.5	51
252	Replacement and Rearrangement of an Oxide Lattice by Germanium Doping in Solution-Processed Indium–Zinc-Oxide Thin-Film Transistors. IEEE Transactions on Electron Devices, 2015, 62, 2888-2893.	3.0	5

#	Article	IF	CITATIONS
253	Various approaches for high performance and stable oxide thin-film transistors. , 2015, , .		0
254	Origin of electrical improvement of amorphous TalnZnO TFT by oxygen thermo-pressure-induced process. Journal Physics D: Applied Physics, 2014, 47, 105104.	2.8	12
255	The Influence of Oxygen High-Pressure Annealing on the Performance and Bias Instability of Amorphous Ge–In–Ga–O Thin-Film Transistors. IEEE Transactions on Electron Devices, 2014, 61, 4132-4136.	3.0	6
256	Effect of Hf incorporation in solution-processed NiOx based resistive random access memory. Applied Physics Letters, 2014, 104, 093508.	3.3	13
257	Enhancement of Initial Growth of ZnO Films on Layer-Structured Bi ₂ Te ₃ by Atomic Layer Deposition. Chemistry of Materials, 2014, 26, 6448-6453.	6.7	14
258	Densification effects on solution-processed indium-gallium-zinc-oxide films and their thin-film transistors. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2195-2198.	1.8	5
259	Pâ€29: DNA Sensing Systems on Flexible Substrate using Solutionâ€processed Oxide Thinâ€film Transistors. Digest of Technical Papers SID International Symposium, 2014, 45, 1051-1054.	0.3	1
260	The effect of a zinc–tin-oxide layer used as an etch-stopper layer on the bias stress stability of solution-processed indium–gallium–zinc-oxide thin-film transistors. Journal Physics D: Applied Physics, 2014, 47, 385104.	2.8	16
261	Improvement of Negative Bias Temperature Illumination Stability of Amorphous IGZO Thin-Film Transistors by Water Vapor-Assisted High-Pressure Oxygen Annealing. ECS Journal of Solid State Science and Technology, 2014, 3, Q95-Q98.	1.8	23
262	Thermopower Enhancement of Bi2Te3 Films by Doping I Ions. Journal of Electronic Materials, 2014, 43, 2000-2005.	2.2	9
263	Boost Up Mobility of Solutionâ€Processed Metal Oxide Thinâ€Film Transistors via Confining Structure on Electron Pathways. Advanced Materials, 2014, 26, 4273-4278.	21.0	175
264	Influence of high-pressure treatment on charge carrier transport in PbS colloidal quantum dot solids. Nanoscale, 2014, 6, 903-907.	5.6	6
265	Growth characteristics and properties of Ga-doped ZnO (GZO) thin films grown by thermal and plasma-enhanced atomic layer deposition. Applied Surface Science, 2014, 295, 260-265.	6.1	44
266	Simple Method to Enhance Positive Bias Stress Stability of In–Ga–Zn–O Thin-Film Transistors Using a Vertically Graded Oxygen-Vacancy Active Layer. ACS Applied Materials & 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 3, 2, 1, 3, 3, 2, 1, 3, 3, 4, 5, 2, 1, 3, 6, 3, 6, 2, 1, 3, 6, 2, 1, 3, 6, 2, 1, 3, 6, 2, 1, 3, 6, 3, 6, 2, 1, 3, 6, 3, 6, 2, 1, 3, 6, 2, 1, 3, 6, 3, 6, 2, 6,	8.0	53
267	Enhanced Electrical Characteristics and Stability via Simultaneous Ultraviolet and Thermal Treatment of Passivated Amorphous In–Ga–Zn–O Thin-Film Transistors. ACS Applied Materials & Interfaces, 2014, 6, 6399-6405.	8.0	67
268	Simultaneous engineering of the interface and bulk layer of Al/sol-NiOx/Si structured resistive random access memory devices. Journal of Materials Chemistry C, 2014, 2, 6148-6154.	5 . 5	11
269	Direct Light Pattern Integration of Low-Temperature Solution-Processed All-Oxide Flexible Electronics. ACS Nano, 2014, 8, 9680-9686.	14.6	128
270	Study of Nitrogen High-Pressure Annealing on InGaZnO Thin-Film Transistors. ACS Applied Materials & Lamp; Interfaces, 2014, 6, 13496-13501.	8.0	52

#	Article	IF	Citations
271	Homojunction Solution-Processed Metal Oxide Thin-Film Transistors Using Passivation-Induced Channel Definition. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4819-4822.	8.0	11
272	Review of solution-processed oxide thin-film transistors. Japanese Journal of Applied Physics, 2014, 53, 02BA02.	1.5	182
273	Improvement in Negative Bias Stress Stability of Solution-Processed Amorphous In–Ga–Zn–O Thin-Film Transistors Using Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2014, 6, 3371-3377.	8.0	71
274	Approaches to label-free flexible DNA biosensors using low-temperature solution-processed InZnO thin-film transistors. Biosensors and Bioelectronics, 2014, 55, 99-105.	10.1	56
275	Enhancement of Organic Solar Cells Efficiency with Acetic Acid Modulated Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate) Buffer Layers. Journal of Nanoscience and Nanotechnology, 2014, 14, 5331-5334.	0.9	0
276	Fabrication of high performance thin-film transistors via pressure-induced nucleation. Scientific Reports, 2014, 4, 6858.	3.3	13
277	Photoresist-Free Fully Self-Patterned Transparent Amorphous Oxide Thin-Film Transistors Obtained by Sol-Gel Process. Scientific Reports, 2014, 4, 4544.	3.3	31
278	Organic Solar Cells with CuO Nanoparticles Mixed PEDOT:PSS Buffer Layer. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2014, 27, 121-125.	0.0	1
279	The effect of various solvents on the back channel of solution-processed In–Ga–Zn–O thin-film transistors intended for biosensor applications. Journal Physics D: Applied Physics, 2013, 46, 035102.	2.8	17
280	Photofield effect and photoresponse properties of the transparent oxide-based BalnZnO thin-film transistors. Sensors and Actuators A: Physical, 2013, 193, 1-12.	4.1	7
281	Hybrid polymer/inorganic nanoparticle blended ternary solar cells. Physica Status Solidi - Rapid Research Letters, 2013, 7, 534-537.	2.4	7
282	Charge-trap effects of 2D DNA nanostructures implanted in solution-processed InGaZnO thin-film transistor. Journal Physics D: Applied Physics, 2013, 46, 215102.	2.8	3
283	Accelerated Formation of Metal Oxide Thin Film at 200 °C Using Oxygen Supplied by a Nitric Acid Additive and Residual Organic Suction Vacuum Annealing for Thin-Film Transistor Applications. ACS Applied Materials & Diterfaces, 2013, 5, 9051-9056.	8.0	18
284	Effects of ZnO Nanoparticles on P3HT:PCBM Organic Solar Cells with DMF-Modulated PEDOT:PSS Buffer Layers. ACS Applied Materials & Date: 11530-11534.	8.0	71
285	Modification of hybrid active bilayer for enhanced efficiency and stability in planar heterojunction colloidal quantum dot photovoltaics. Nanoscale Research Letters, 2013, 8, 488.	5.7	1
286	Low-Cost Label-Free Electrical Detection of Artificial DNA Nanostructures Using Solution-Processed Oxide Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10715-10720.	8.0	58
287	Combined effect of the large ionic radius and low electronegativity of lanthanum additive on solution-processed zinc–tin–oxide thin-film transistors. Thin Solid Films, 2013, 536, 291-294.	1.8	12
288	Formation of silicon nanoparticles by a pressure induced nucleation mechanism. Nanoscale, 2013, 5, 3266.	5.6	7

#	Article	IF	Citations
289	Defect reduction in photon-accelerated negative bias instability of $InGaZnO$ thin-film transistors by high-pressure water vapor annealing. Applied Physics Letters, 2013, 102, .	3.3	44
290	Electrical Responses of Artificial DNA Nanostructures on Solution-Processed In-Ga-Zn-O Thin-Film Transistors with Multistacked Active Layers. ACS Applied Materials & Samp; Interfaces, 2013, 5, 98-102.	8.0	27
291	Low-Temperature Metal-Oxide Thin-Film Transistors Formed by Directly Photopatternable and Combustible Solution Synthesis. ACS Applied Materials & Interfaces, 2013, 5, 3565-3571.	8.0	98
292	Chemical Stability and Electrical Performance of Dual-Active-Layered Zinc–Tin–Oxide/Indium–Gallium–Zinc–Oxide Thin-Film Transistors Using a Solution Process. ACS Applied Materials & Diterfaces, 2013, 5, 6108-6112.	8.0	60
293	Enhanced Electrical Properties of Thin-Film Transistor with Self-Passivated Multistacked Active Layers. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4190-4194.	8.0	36
294	Approaches to Decreasing the Processing Temperature for a Solution-Processed InZnO Thin-Film Transistors. Japanese Journal of Applied Physics, 2013, 52, 03BB06.	1.5	6
295	Recent advances in low-temperature solution-processed oxide backplanes. Journal of Information Display, 2013, 14, 79-87.	4.0	44
296	Origin of Device Performance Degradation in InGaZnO Thin-Film Transistors after Crystallization. Japanese Journal of Applied Physics, 2012, 51, 015601.	1.5	5
297	Effect of Solution-Processed NiO Thin Film as a Hole Transport Layer in Poly(3-hexylthiophene): [6,6]-Phenyl C61-Butyric Acid Methyl Ester Bulk Heterojunction Solar Cells. Journal of Nanoscience and Nanotechnology, 2012, 12, 1165-1169.	0.9	5
298	Carrier-Suppressing Effect of Mg in Solution-Processed Zn-Sn-O Thin-Film Transistors. Electrochemical and Solid-State Letters, 2012, 15, H78.	2.2	16
299	Thermoelectric Properties of Bi ₂ Te ₃ â€"In ₂ Se ₃ Composite Thin Films Prepared by Co-Sputtering. Journal of Nanoscience and Nanotechnology, 2012, 12, 3633-3636.	0.9	2
300	Solution-processed indium–zinc oxide with carrier-suppressing additives. Journal of Information Display, 2012, 13, 113-118.	4.0	7
301	P-17: Performance Enhancement of Solution-Processed Zn-Sn-O TFTs Using High-Pressure Annealing. Digest of Technical Papers SID International Symposium, 2012, 43, 1104-1107.	0.3	1
302	The restoration of DNA structures by the dry–wet method. Soft Matter, 2012, 8, 619-622.	2.7	6
303	High-Performance Oxide Thin-Film Transistors Using a Volatile Nitrate Precursor for Low-Temperature Solution Process. IEEE Electron Device Letters, 2012, 33, 68-70.	3.9	37
304	Low-voltage driving solution-processed nickel oxide based unipolar resistive switching memory with Ni nanoparticles. Journal of Materials Chemistry, 2012, 22, 17568.	6.7	26
305	Epitaxial growth of CdTe films on GaAs-buffered (001) Si substrates by metal organic chemical vapor deposition. Materials Letters, 2012, 87, 139-141.	2.6	3

 $Hole\ Transport\ Enhancing\ Effects\ of\ Polar\ Solvents\ on\ Poly (3,4-ethylenedioxythiophene): Poly (styrene)\ Tj\ ETQq0\ 0\ Q_{1}gBT\ /Ovgrlock\ 10\ TgBT\ /Ovgrlock\ 10\ Tg$

18

306

#	Article	IF	Citations
307	Artificial DNA nanostructure detection using solution-processed In-Ga-Zn-O thin-film transistors. Applied Physics Letters, 2012, 100, .	3.3	25
308	A Structural Investigation of CdTe(001) Thin Films on GaAs/Si(001) Substrates by High-Resolution Electron Microscopy. Journal of Electronic Materials, 2012, 41, 2795-2798.	2.2	2
309	Improved Electrical Performance of an Oxide Thin-Film Transistor Having Multistacked Active Layers Using a Solution Process. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4001-4005.	8.0	81
310	Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors. Journal of Materials Chemistry, 2012, 22, 12491.	6.7	158
311	Influence of substrate temperature on the electrical and optical properties of Ga-doped ZnO thin films fabricated by continuous composition spread. Ceramics International, 2012, 38, S605-S608.	4.8	15
312	Stability enhancement of organic solar cells with solution-processed nickel oxide thin films as hole transport layers. Solar Energy Materials and Solar Cells, 2012, 102, 103-108.	6.2	46
313	The Effects of Dual-Active-Layer Modulation on a Low-Temperature Solution-Processed Oxide Thin-Film Transistor. IEEE Transactions on Electron Devices, 2012, 59, 2149-2152.	3.0	29
314	Origin of Device Performance Degradation in InGaZnO Thin-Film Transistors after Crystallization. Japanese Journal of Applied Physics, 2012, 51, 015601.	1.5	3
315	Improved Uniformity of Sequential Lateral Solidification Thin-Film Transistors. IEEE Electron Device Letters, 2011, 32, 767-769.	3.9	8
316	Study on the Effects of Zr-Incorporated InZnO Thin-Film Transistors Using a Solution Process. Japanese Journal of Applied Physics, 2011, 50, 070202.	1.5	8
317	A two-dimensional DNA lattice implanted polymer solar cell. Nanotechnology, 2011, 22, 375202.	2.6	35
318	Memory effects of allâ€solutionâ€processed oxide thinâ€film transistors using ZnO nanoparticles. Journal of the Society for Information Display, 2011, 19, 404-409.	2.1	2
319	Solutionâ€processed oxide thinâ€film transistors using aluminum and nitrate precursors for lowâ€temperature annealing. Journal of the Society for Information Display, 2011, 19, 620-622.	2.1	3
320	Pâ€14: High Performance Solutionâ€Processed IGZO TFTs Formed by Using a Highâ€Pressure Annealing Method. Digest of Technical Papers SID International Symposium, 2011, 42, 1148-1150.	0.3	2
321	Pâ€19: Effect of Back Channel Passivation on the Operation Stability of Solutionâ€processed Transparent Oxide TFTs and Ring Oscillators. Digest of Technical Papers SID International Symposium, 2011, 42, 1166-1169.	0.3	2
322	35.2: Highâ∈Performance Solutionâ∈Processed Oxide TFT with Dual Channel at Low Temperature. Digest of Technical Papers SID International Symposium, 2011, 42, 476-478.	0.3	0
323	Influence of thermal parameter on solution-processed Zr-doped ZTO thin-film transistors. Current Applied Physics, 2011, 11, S258-S261.	2.4	15
324	Effects of highâ€pressure H ₂ Oâ€annealing on amorphous IGZO thinâ€film transistors. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2231-2234.	1.8	21

#	Article	IF	Citations
325	Effects of UV light and carbon nanotube dopant on solution-based indium gallium zinc oxide thin-film transistors. Current Applied Physics, 2011, 11, 280-285.	2.4	43
326	Analysis on thermite reactions of CuO nanowires and nanopowders coated with Al. Current Applied Physics, 2011, 11, 1067-1070.	2.4	37
327	The formation of InZnO lattices incorporating Ba for thin-film transistors using a solution process. Journal of Crystal Growth, 2011, 326, 163-165.	1.5	22
328	Investigation of solution-processed amorphous SrInZnO thin film transistors. Journal of Crystal Growth, 2011, 326, 171-174.	1.5	20
329	Improvement in stability of poly(3-hexylthiophene-2,5-diyl)/[6,6]-phenyl-C61-butyric acid methyl ester bulk heterojunction solar cell by using UV light irradiation. Solar Energy Materials and Solar Cells, 2011, 95, 1037-1041.	6.2	17
330	Nonvolatile memory characteristics of solution-processed oxide thin-film transistors using Ag nanoparticles. Thin Solid Films, 2011, 519, 5771-5774.	1.8	6
331	Effects of Hf incorporation in solution-processed Hf-InZnO TFTs. Thin Solid Films, 2011, 519, 5740-5743.	1.8	37
332	Fast and Stable Solution-Processed Transparent Oxide Thin-Film Transistor Circuits. IEEE Electron Device Letters, 2011, 32, 524-526.	3.9	22
333	Low-Temperature Solution Processing of AllnZnO/InZnO Dual-Channel Thin-Film Transistors. IEEE Electron Device Letters, 2011, 32, 1242-1244.	3.9	64
334	Quenching Effects on the Solution-Processed In-Ga-Zn-O System. Electrochemical and Solid-State Letters, 2011, 14, E28.	2.2	4
335	Low-Temperature Solution-Processed ZrO2 Gate Insulators for Thin-Film Transistors Using High-Pressure Annealing. Electrochemical and Solid-State Letters, 2011, 14, E35.	2.2	44
336	Annealing temperature dependence on the positive bias stability of IGZO thin-film transistors. Journal of Information Display, 2011, 12, 209-212.	4.0	16
337	Study on the Effects of Zr-Incorporated InZnO Thin-Film Transistors Using a Solution Process. Japanese Journal of Applied Physics, 2011, 50, 070202.	1.5	10
338	Stability of Solution-processed ZrlnZnO Thin-film Transistors under Gate Bias Stress. Journal of the Korean Physical Society, 2011, 59, 353-356.	0.7	0
339	Pâ€22: Memory Effects of Solutionâ€processed Oxide Thinâ€Film Transistor using ZnO Nanoparticles. Digest of Technical Papers SID International Symposium, 2010, 41, 1304-1317.	0.3	0
340	Pâ€23: Solutionâ€processed Amorphous Lanthanum Indium Zinc Oxide Thinâ€film Transistors. Digest of Technical Papers SID International Symposium, 2010, 41, 1308-1311.	0.3	4
341	Low power micro-gas sensors using mixed SnO2 nanoparticles and MWCNTs to detect NO2, NH3, and xylene gases for ubiquitous sensor network applications. Sensors and Actuators B: Chemical, 2010, 150, 65-72.	7.8	78
342	Metalorganic Chemical Vapor Deposition of $CdTe(133)$ Epilayers on $Si(211)$ Substrates. Journal of Electronic Materials, 2010, 39, 863-867.	2.2	13

#	Article	IF	Citations
343	Selective area crystallization of amorphous silicon using micro-patterned SiO2 capping layer. Journal of Crystal Growth, 2010, 312, 2335-2338.	1.5	1
344	Photosensitive terpolymer for all-wet-etching process: Material characterization and device fabrication. Thin Solid Films, 2010, 518, 2147-2151.	1.8	0
345	Crystallization of amorphous Si thin films by the reaction of MoO3/Al nanoengineered thermite. Thin Solid Films, 2010, 518, 6205-6209.	1.8	14
346	Characteristics of gravure printed InGaZnO thin films as an active channel layer in thin film transistors. Thin Solid Films, 2010, 518, 6249-6252.	1.8	49
347	Electrical and optical properties of Ga doped zinc oxide thin films deposited at room temperature by continuous composition spread. Applied Surface Science, 2010, 256, 6219-6223.	6.1	18
348	Fabrication of transparent nanocrystalline InGaO ₃ (ZnO) ₂ thin films using a solution process. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1660-1663.	1.8	5
349	On the mechanism of conductivity enhancement and work function control in PEDOT:PSS film through UV-light treatment. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1704-1707.	1.8	37
350	InGaZnO thinâ€film transistors with YHfZnO gate insulator by solution process. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1668-1671.	1.8	16
351	Electrical characteristics of solutionâ€processed InGaZnO thin film transistors depending on Ga concentration. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1677-1679.	1.8	84
352	Thermal activation effects on the stoichiometry of indium zinc oxide thinâ€ilm transistors. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1689-1693.	1.8	6
353	Performance modification in solution-processed SnZnO thin film transistor. Materials Research Society Symposia Proceedings, 2010, 1247, 1.	0.1	0
354	Electrical Properties of Yttrium–Indium–Zinc-Oxide Thin Film Transistors Fabricated Using the Sol–Gel Process and Various Yttrium Compositions. Japanese Journal of Applied Physics, 2010, 49, 03CB01.	1.5	39
355	Investigating addition effect of hafnium in InZnO thin film transistors using a solution process. Applied Physics Letters, 2010, 96, .	3.3	131
356	A multi-channel structure to enhance the performance of a sequential lateral solidification thin-film transistor. Applied Physics Letters, 2010, 97, 202103.	3.3	10
357	Hierarchical Modulation of PEDOT:PSS Buffer Layers for High Efficiency Organic Photovoltaic Devices. Electrochemical and Solid-State Letters, 2010, 13, H447.	2.2	7
358	Carrier-suppressing effect of scandium in InZnO systems for solution-processed thin film transistors. Applied Physics Letters, 2010, 97, .	3.3	54
359	Density-of-States Modeling of Solution-Processed InGaZnO Thin-Film Transistors. IEEE Electron Device Letters, 2010, 31, 1131-1133.	3.9	42
360	Effect of Zr addition on ZnSnO thin-film transistors using a solution process. Applied Physics Letters, 2010, 97, .	3.3	168

#	Article	IF	Citations
361	Characterization of a solutionâ€processed YHfZnO gate insulator for thinâ€film transistors. Journal of Information Display, 2010, 11, 165-168.	4.0	9
362	Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors. Applied Physics Letters, $2010, 96, .$	3.3	136
363	Structural Investigation of Hybrid Organic Photovoltaic Devices with Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics, 2010, 49, 111602.	1.5	2
364	The effect of La in InZnO systems for solution-processed amorphous oxide thin-film transistors. Applied Physics Letters, 2010, 97, .	3.3	59
365	Review on optical and electrical properties of oxide semiconductors. Proceedings of SPIE, 2010, , .	0.8	3
366	High Electrical Performance of Wet-Processed Indium Zinc Oxide Thin-Film Transistors. IEEE Electron Device Letters, 2010, 31, 311-313.	3.9	68
367	Ink-Jet-Printed Zinc–Tin–Oxide Thin-Film Transistors and Circuits With Rapid Thermal Annealing Process. IEEE Electron Device Letters, 2010, 31, 836-838.	3.9	45
368	Electrical and Optical Properties of Al-doped Zinc-oxide Thin Films Deposited at Room Temperature by Using the Continuous Composition Spread Method. Journal of the Korean Physical Society, 2010, 57, 1092-1095.	0.7	3
369	Photosensitivity of solution-based indium gallium zinc oxide single-walled carbon nanotubes blend thin film transistors. Applied Physics Letters, 2009, 94, .	3.3	27
370	New solidâ€phase crystallization of amorphous silicon by selective area heating. Journal of Information Display, 2009, 10, 117-120.	4.0	0
371	Self-Selective Separation of Single-Walled Carbon Nanotubes via a Hydroxyl Group Reaction. Electrochemical and Solid-State Letters, 2009, 12, K71.	2.2	3
372	The Effect of Ultraviolet Exposure on Solution Process of Silicon Thin Film. Electrochemical and Solid-State Letters, 2009, 12, E23.	2.2	1
373	Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors. Applied Physics Letters, 2009, 94, .	3.3	200
374	Memory effects based on random networks of single-walled carbon nanotubes. Nanotechnology, 2009, 20, 405210.	2.6	6
375	New Crystallization Method of Amorphous Silicon by Selective Area Heating for Stamp Process. Molecular Crystals and Liquid Crystals, 2009, 510, 329/[1463]-336/[1470].	0.9	0
376	Recovery properties of hydrogen gas sensor with Pd/titanate and Pt/titanate nanotubes photo-catalyst by UV radiation from catalytic poisoning of H2S. Current Applied Physics, 2009, 9, 172-178.	2.4	21
377	Indium zinc oxide ohmic contact to poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) induced by UV light. Organic Electronics, 2009, 10, 785-790.	2.6	17
378	Thin film transistors by solution-based indium gallium zinc oxide/carbon nanotubes blend. Thin Solid Films, 2009, 517, 4011-4014.	1.8	19

#	Article	IF	Citations
379	Inkjet-printed InGaZnO thin film transistor. Thin Solid Films, 2009, 517, 4007-4010.	1.8	153
380	Fabricating gate insulator by low temperature solution-based process. Thin Solid Films, 2009, 517, 4135-4137.	1.8	6
381	Tantalum capping on platinum thin heater for selective area heating. Thin Solid Films, 2009, 517, 4127-4130.	1.8	2
382	Effect of oxygen pressure of SiOx buffer layer on the electrical properties of GZO film deposited on PET substrate. Thin Solid Films, 2009, 517, 6414-6417.	1.8	21
383	The effect of thermal annealing sequence on amorphous InGaZnO thin film transistor with a plasma-treated source–drain structure. Thin Solid Films, 2009, 517, 6349-6352.	1.8	43
384	Effect of wire temperature on the microstructural evolution of Si films in hot-wire chemical vapor deposition for digital display and photovoltaic devices. Solar Energy Materials and Solar Cells, 2009, 93, 324-328.	6.2	3
385	Investigation on doping behavior of copper in ZnO thin film. Microelectronics Journal, 2009, 40, 272-275.	2.0	45
386	Crystallization of amorphous silicon thin films using nanoenergetic intermolecular materials with buffer layers. Journal of Crystal Growth, 2009, 311, 1025-1031.	1.5	9
387	Modeling of In2O3-10wt% ZnO thin film properties for transparent conductive oxide using neural networks. Current Applied Physics, 2009, 9, 1407-1410.	2.4	5
388	Effect of Single-Walled Carbon Nanotube Concentration on the Electrical Properties of Solution-Based Indium Gallium Zinc Oxide Thin Film Transistors. Molecular Crystals and Liquid Crystals, 2009, 510, 87/[1221]-95/[1229].	0.9	2
389	Formation Mechanism of Solution-Processed Nanocrystalline InGaZnO Thin Film as Active Channel Layer in Thin-Film Transistor. Journal of the Electrochemical Society, 2009, 156, H7.	2.9	187
390	Effect of Excimer Laser Annealing on the Performance of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors. Electrochemical and Solid-State Letters, 2009, 12, H430.	2.2	24
391	Light effects of the amorphous indium gallium zinc oxide thinâ€film transistor. Journal of Information Display, 2009, 10, 171-174.	4.0	24
392	A Novel Amorphous InGaZnO Thin Film Transistor Structure without Source/Drain Layer Deposition. Japanese Journal of Applied Physics, 2009, 48, 03B019.	1.5	52
393	Pâ€182L: <i>Lateâ€News Poster</i> : Improvements in the Device Performance of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors by XeCl Excimer Laser Irradiation. Digest of Technical Papers SID International Symposium, 2009, 40, 1170-1172.	0.3	4
394	Transparent Ga-doped zinc oxide-based window heaters fabricated by pulsed laser deposition. Journal of Crystal Growth, 2008, 310, 3303-3307.	1.5	39
395	Effect of negatively charged species on the growth behavior of silicon films in hot wire chemical vapor deposition. Thin Solid Films, 2008, 516, 5122-5126.	1.8	5
396	High-k TixSi $1\hat{a}^{*}$ xO2 thin films prepared by co-sputtering method. Microelectronic Engineering, 2008, 85, 100-103.	2.4	5

#	Article	IF	Citations
397	Junction Temperature Measurement of InAs Quantum-Dot Laser Diodes by Utilizing Voltage–Temperature Method. IEEE Photonics Technology Letters, 2008, 20, 1354-1356.	2.5	15
398	Investigation on doping dependency of solution-processed Ga-doped ZnO thin film transistor. Applied Physics Letters, 2008, 93, .	3.3	114
399	Electrical analysis of bottom gate TFT with novel process architecture. Journal of Information Display, 2008, 9, 5-8.	4.0	0
400	Growth of Transparent nc-InGaO[sub 3](ZnO)[sub 2] Thin Films with Indium mol Ratios Using Solution Process. Journal of the Electrochemical Society, 2008, 155, H848.	2.9	14
401	Comparison of the effects of Ar and H2 plasmas on the performance of homojunctioned amorphous indium gallium zinc oxide thin film transistors. Applied Physics Letters, 2008, 93, .	3.3	191
402	Pâ€24: Fabrication of Solution Processed InGaZnO Thin Film Transistor for Active Matrix Backplane. Digest of Technical Papers SID International Symposium, 2008, 39, 1258-1261.	0.3	9
403	Low temperature conduction and scattering behavior of Ga-doped ZnO. Applied Physics Letters, 2007, 91, 252109.	3.3	39
404	Double component long period waveguide grating filter in sol-gel material. Optics Express, 2007, 15, 15147.	3.4	7
405	Influence of thermal annealing ambient on Ga-doped ZnO thin films. Journal of Crystal Growth, 2007, 309, 128-133.	1.5	137
406	Thermal Analysis of InAs Quantum Dot Laser Diodes with an Additional Au Layer on p-Metal. Journal of the Korean Physical Society, 2007, 50, 1936.	0.7	0
407	P-4: Microcrystalline Silicon TFTs for Active Matrix Displays. Digest of Technical Papers SID International Symposium, 2006, 37, 204.	0.3	3
408	Excimerâ€laser annealing for lowâ€temperature polyâ€Si TFTs. Journal of Information Display, 2003, 4, 1-3.	4.0	0
409	Development of world's largest 21.3―LTPS LCD using sequential lateral solidification (SLS) technology. Journal of Information Display, 2003, 4, 4-7.	4.0	4
410	Effect of SiO2 Capping Layer on a Laser Crystallization of a-Si Thin Film. Materials Research Society Symposia Proceedings, 2003, 762, 1731.	0.1	5
411	Controlled Super-Lateral Growth of Si Films for Microstructural Manipulation and Optimization. Physica Status Solidi A, 1998, 166, 603-617.	1.7	123
412	New excimerâ€laserâ€crystallization method for producing largeâ€grained and grain boundaryâ€locationâ€controlled Si films for thin film transistors. Applied Physics Letters, 1996, 68, 1513-1515.	3.3	112
413	On the super lateral growth phenomenon observed in excimer laserâ€induced crystallization of thin Si films. Applied Physics Letters, 1994, 64, 2303-2305.	3.3	223
414	Phase transformation mechanisms involved in excimer laser crystallization of amorphous silicon films. Applied Physics Letters, 1993, 63, 1969-1971.	3.3	525

#	Article	IF	CITATIONS
415	Novel channel edge doping for hump reduction in LTPS TFTs. Journal of Information Display, 0, , 1-7.	4.0	0