Cristiano Bolchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5615007/publications.pdf

Version: 2024-02-01

69 papers

1,027 citations

20 h-index 27 g-index

74 all docs

74 docs citations

times ranked

74

979 citing authors

#	Article	IF	CITATIONS
1	Evidence of a dual mechanism of action underlying the anti-proliferative and cytotoxic effects of ammonium-alkyloxy-stilbene-based $\hat{l}\pm7$ - and $\hat{l}\pm9$ -nicotinic ligands on glioblastoma cells. Pharmacological Research, 2022, 175, 105959.	7.1	9
2	Pyrrolidinyl benzofurans and benzodioxanes: Selective $\hat{l}\pm4\hat{l}^22$ nicotinic acetylcholine receptor ligands with different activity profiles at the two receptor stoichiometries. Bioorganic and Medicinal Chemistry Letters, 2022, 65, 128701.	2.2	4
3	From 2-Triethylammonium Ethyl Ether of 4-Stilbenol (MG624) to Selective Small-Molecule Antagonists of Human $\hat{1}$ ±9 $\hat{1}$ ±10 Nicotinic Receptor by Modifications at the Ammonium Ethyl Residue. Journal of Medicinal Chemistry, 2022, 65, 10079-10097.	6.4	9
4	Castanea sativa Mill. bark extract cardiovascular effects in a rat model of highâ€fat diet. Phytotherapy Research, 2021, 35, 2145-2156.	5.8	4
5	Development and Early Identification of Cannabis Chemotypes during the Plant Growth: Current Analytical and Chemometric Approaches. Analytical Sciences, 2021, 37, 1665-1673.	1.6	3
6	Efficient conversion of d-mannitol into 1,2:5,6-diacetonide with Aquivion-H as a recyclable catalyst. Carbohydrate Research, 2021, 499, 108229.	2.3	1
7	Determinants for $\hat{l}\pm4\hat{l}^22$ vs. $\hat{l}\pm3\hat{l}^24$ Subtype Selectivity of Pyrrolidine-Based nAChRs Ligands: A Computational Perspective with Focus on Recent cryo-EM Receptor Structures. Molecules, 2021, 26, 3603.	3.8	7
8	Characterization of chemotype-dependent terpenoids profile in cannabis by headspace gas-chromatography coupled to time-of-flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2021, 203, 114180.	2.8	8
9	Green Oxidation of Ketones to Lactones with Oxone in Water. Journal of Organic Chemistry, 2021, 86, 15712-15716.	3.2	6
10	Synthesis of \hat{I}_{\pm} -Hydroxy Fatty Acids from Fatty Acids by Intermediate \hat{I}_{\pm} -Chlorination with TCCA under Solvent-Free Conditions: A Way to Valorization of Waste Fat Biomasses. ACS Omega, 2021, 6, 31901-31906.	3.5	3
11	Efficient Oneâ€Pot Reductive Aminations of Carbonyl Compounds with Aquivionâ€Fe as a Recyclable Catalyst and Sodium Borohydride. European Journal of Organic Chemistry, 2020, 2020, 162-168.	2.4	8
12	Antihypertensive phytocomplexes of proven efficacy and well-established use: Mode of action and individual characterization of the active constituents. Phytochemistry, 2020, 170, 112222.	2.9	11
13	Modifications at C(5) of 2-(2-Pyrrolidinyl)-Substituted 1,4-Benzodioxane Elicit Potent $\hat{1}\pm4\hat{1}^22$ Nicotinic Acetylcholine Receptor Partial Agonism with High Selectivity over the $\hat{1}\pm3\hat{1}^24$ Subtype. Journal of Medicinal Chemistry, 2020, 63, 15668-15692.	6.4	12
14	1,4-Benzodioxane, an evergreen, versatile scaffold in medicinal chemistry: A review of its recent applications in drug design. European Journal of Medicinal Chemistry, 2020, 200, 112419.	5.5	17
15	Behavioural and pharmacological profiles of zebrafish administrated pyrrolidinyl benzodioxanes and prolinol aryl ethers with high affinity for heteromeric nicotinic acetylcholine receptors. Psychopharmacology, 2020, 237, 2317-2326.	3.1	11
16	Ten Years of Fentanyl-like Drugs: a Technical-analytical Review. Analytical Sciences, 2019, 35, 479-491.	1.6	25
17	Determination of Methyldibromoglutaronitrile (MDBGN) in Skin Care Products by Gaschromatographyâ€Mass Spectrometry Employing an Enhanced Matrix Removal (EMR) Lipid Cleanâ€Up. European Journal of Lipid Science and Technology, 2018, 120, 1700525.	1.5	8
18	α9―and α7 ontaining receptors mediate the proâ€proliferative effects of nicotine in the A549 adenocarcinoma cell line. British Journal of Pharmacology, 2018, 175, 1957-1972.	5.4	61

#	Article	IF	CITATIONS
19	Simple route to synthesize $(\langle i\rangle E\langle i\rangle)$ -3-propyl-4-oxo-2-butenoic acid esters through the $\langle i\rangle Z\langle i\rangle$ isomer. Synthetic Communications, 2018, 48, 85-90.	2.1	1
20	Potent Antiglioblastoma Agents by Hybridizing the Onium-Alkyloxy-Stilbene Based Structures of an \hat{l}_{\pm} 7-nAChR, \hat{l}_{\pm} 9-nAChR Antagonist and of a Pro-Oxidant Mitocan. Journal of Medicinal Chemistry, 2018, 61, 10531-10544.	6.4	21
21	1H NMR spectroscopy in the presence of Mosher acid to rapidly determine the enantiomeric composition of amino acid benzyl esters, chirons susceptible to easy racemization. Amino Acids, 2018, 50, 1759-1767.	2.7	1
22	Liver and intestinal protective effects of Castanea sativa Mill. bark extract in high-fat diet rats. PLoS ONE, 2018, 13, e0201540.	2.5	14
23	Preparation of enantiopure methionine, arginine, tryptophan, and proline benzyl esters in green ethers by Fischer–Speier reaction. Amino Acids, 2018, 50, 1261-1268.	2.7	5
24	One-step preparation of enantiopure l- or d-amino acid benzyl esters avoiding the use of banned solvents. Amino Acids, 2017, 49, 965-974.	2.7	8
25	Preparation and unequivocal identification of the regioisomers of nitrocatechol monobenzyl ether. Synthetic Communications, 2017, 47, 1507-1513.	2.1	4
26	Phase Diagrams to Evaluate the Opportunity for Enantiomeric Enrichment of Some Nonracemic Mixtures of Amino Acid Benzyl Esters by Crystallization as p-Toluenesulfonate Salts. Organic Process Research and Development, 2017, 21, 1752-1757.	2.7	2
27	From pyrrolidinyl-benzodioxane to pyrrolidinyl-pyridodioxanes, or from unselective antagonism to selective partial agonism at 1 ± 41^2 2 nicotinic acetylcholine receptor. European Journal of Medicinal Chemistry, 2017, 125, 1132-1144.	5.5	15
28	Crystallization-based resolution of 1,4-benzodioxane-2-carboxylic acid enantiomers via diastereomeric 1-phenylethylamides. Tetrahedron Letters, 2016, 57, 2009-2011.	1.4	6
29	Novel 5-substituted 3-hydroxyphenyl and 3-nitrophenyl ethers of S -prolinol as $\hat{1}\pm4\hat{1}^2$ 2-nicotinic acetylcholine receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5613-5617.	2.2	7
30	3-(Benzodioxan-2-ylmethoxy)-2,6-difluorobenzamides bearing hydrophobic substituents at the 7-position of the benzodioxane nucleus potently inhibit methicillin-resistant Sa and Mtb cell division. European Journal of Medicinal Chemistry, 2016, 120, 227-243.	5 . 5	28
31	A selective alpha1D-adrenoreceptor antagonist inhibits human prostate cancer cell proliferation and motility "in vitro― Pharmacological Research, 2016, 103, 215-226.	7.1	8
32	Enantiomerically Pure Dibenzyl Esters of <scp>l</scp> -Aspartic and <scp>l</scp> -Glutamic Acid. Organic Process Research and Development, 2015, 19, 878-883.	2.7	7
33	Chemistry and Pharmacology of a Series of Unichiral Analogues of 2-(2-Pyrrolidinyl)-1,4-benzodioxane, Prolinol Phenyl Ether, and Prolinol 3-Pyridyl Ether Designed as $\hat{l}\pm4\hat{l}^2$ 2-Nicotinic Acetylcholine Receptor Agonists. Journal of Medicinal Chemistry, 2015, 58, 6665-6677.	6.4	24
34	Benzodioxane–benzamides as new bacterial cell division inhibitors. European Journal of Medicinal Chemistry, 2015, 89, 252-265.	5 . 5	45
35	Farnesyltransferase inhibitors: CAAX mimetics based on different biaryl scaffolds. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2924-2927.	2.2	15
36	From 2-Aminomethyl-1,4-benzodioxane Enantiomers to Unichiral 2-Cyano- and 2-Carbonyl-Substituted Benzodioxanes via Dichloroamine. Journal of Organic Chemistry, 2014, 79, 6732-6737.	3.2	17

#	Article	IF	Citations
37	Simple Process for the Preparation of Cetyltrimethylammonium Naproxenate (Naprocet). Organic Process Research and Development, 2014, 18, 976-979.	2.7	0
38	Diastereomeric 2-aminomethyl-1,4-benzodioxane mandelates: phase diagrams and resolution. Tetrahedron: Asymmetry, 2013, 24, 796-800.	1.8	7
39	Design, synthesis and binding affinity of acetylcholine carbamoyl analogues. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 6481-6485.	2.2	4
40	6-Methoxy-7-benzofuranoxy and 6-Methoxy-7-indolyloxy Analogues of 2-[2-(2,6-Dimethoxyphenoxy)ethyl]aminomethyl-1,4-benzodioxane (WB4101):1 Discovery of a Potent and Selective $\hat{l}\pm$ _{1D} -Adrenoceptor Antagonist. Journal of Medicinal Chemistry, 2013, 56, 6402-6412.	6.4	25
41	One-Pot Racemization Process of 1-Phenyl-1,2,3,4-tetrahydroisoquinoline: A Key Intermediate for the Antimuscarinic Agent Solifenacin. Organic Process Research and Development, 2013, 17, 432-437.	2.7	24
42	Affinity and activity profiling of unichiral 8-substituted 1,4-benzodioxane analogues of WB4101 reveals a potent and selective $\hat{l}\pm 1B$ -adrenoceptor antagonist. European Journal of Medicinal Chemistry, 2012, 58, 184-191.	5.5	21
43	Predicting the physicochemical profile of diastereoisomeric histidineâ€containing dipeptides by property space analysis. Chirality, 2012, 24, 566-576.	2.6	26
44	From carnitinamide to 5-aminomethyl-2-oxazolidinones. Tetrahedron: Asymmetry, 2012, 23, 217-220.	1.8	8
45	Unichiral 2-(2′-Pyrrolidinyl)-1,4-benzodioxanes: the 2 <i>R</i> ,2′ <i>S</i> Diastereomer of the <i>N</i> -Methyl-7-hydroxy Analogue Is a Potent α4β2- and α6β2-Nicotinic Acetylcholine Receptor Partial Agonist. Journal of Medicinal Chemistry, 2011, 54, 7588-7601.	6.4	26
46	Thiazole- and imidazole-containing peptidomimetic inhibitors of protein farnesyltransferase. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5408-5412.	2.2	20
47	Highly efficient racemisation of a key intermediate of the antibiotic moxifloxacin. Tetrahedron: Asymmetry, 2011, 22, 379-380.	1.8	16
48	A highly efficient method for the \hat{l}_{\pm} , \hat{l}_{\pm} -dehydrogenation of \hat{l}_{\pm} -amino esters and \hat{l}_{\pm} -amino- \hat{l}_{\pm} -diesters. Tetrahedron Letters, 2010, 51, 5540-5542.	1.4	10
49	Influence of Ionization State on the Activation of Temocapril by hCES1: A Molecularâ€Dynamics Study. Chemistry and Biodiversity, 2009, 6, 2092-2100.	2.1	14
50	5-(2-Pyrrolidinyl)oxazolidinones and 2-(2-pyrrolidinyl)benzodioxanes: Synthesis of all the stereoisomers and $\hat{l}\pm4\hat{l}^22$ nicotinic affinity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 854-859.	2,2	18
51	New Ras CAAX mimetics: Design, synthesis, antiproliferative activity, and RAS prenylation inhibition. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5500-5504.	2.2	12
52	Entrainment resolution of carnitinamide chloride. Tetrahedron: Asymmetry, 2008, 19, 1637-1640.	1.8	11
53	Modelling of full-length human $\hat{1}\pm4\hat{1}^22$ nicotinic receptor by fragmental approach and analysis of its binding modes. Biochemical and Biophysical Research Communications, 2008, 369, 648-653.	2.1	16
54	Enantiomer systems of carnitinamide inorganic salts: introductory studies to a successful entrainment resolution. Tetrahedron: Asymmetry, 2007, 18, 906-909.	1.8	9

#	Article	IF	CITATIONS
55	Peptidomimetic inhibitors of farnesyltransferase with high in vitro activity and significant cellular potency. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6192-6196.	2.2	20
56	Resolution of 2-substituted 1,4-benzodioxanes by entrainment. Tetrahedron: Asymmetry, 2007, 18, 1038-1041.	1.8	21
57	WB4101-Related Compounds:  New, Subtype-Selective α1-Adrenoreceptor Antagonists (or Inverse) Tj ETQq1	1.0.7843	14 rgBT /0
58	QSAR study forÂaÂnovel series ofÂortho disubstituted phenoxy analogues ofÂα1-adrenoceptor antagonist WB4101. European Journal of Medicinal Chemistry, 2006, 41, 1025-1040.	5 . 5	24
59	Synthesis and $\hat{l}\pm4\hat{l}^22$ nicotinic affinity of unichiral 5-(2-pyrrolidinyl)oxazolidinones and 2-(2-pyrrolidinyl)benzodioxanes. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5610-5615.	2.2	19
60	QSAR study for a novel series of ortho monosubstituted phenoxy analogues of $\hat{l}\pm 1$ -adrenoceptor antagonist WB4101. Bioorganic and Medicinal Chemistry, 2005, 13, 2547-2559.	3.0	26
61	Highly efficient resolutions of 1,4-benzodioxane-2-carboxylic acid with para substituted 1-phenylethylamines. Tetrahedron: Asymmetry, 2005, 16, 1639-1643.	1.8	26
62	Influence of (S)-1-phenylethylamine para substitution on the resolution of $(\hat{A}\pm)$ -1,4-benzodioxane-2-carboxylic acid: a crystallographic, theoretical and morphologic approach. Tetrahedron: Asymmetry, 2005, 16, 2099-2106.	1.8	16
63	Univocal syntheses of 2- and 3-hydroxymethyl-2,3-dihydro[1,4]dioxino[2,3-b]pyridine enantiomers. Tetrahedron: Asymmetry, 2005, 16, 3380-3384.	1.8	11
64	Structure–affinity studies for a novel series of homochiral naphtho and tetrahydronaphtho analogues of α1 antagonist WB-4101. Bioorganic and Medicinal Chemistry, 2004, 12, 4937-4951.	3.0	38
65	Resolution of 5-hydroxymethyl-2-oxazolidinone by preferential crystallization and investigations on the nature of the racemates of some 2-oxazolidinone derivatives. Tetrahedron: Asymmetry, 2004, 15, 1659-1665.	1.8	22
66	Synthesis and $\hat{l}\pm4\hat{l}^22$ nicotinic affinity of 2-pyrrolidinylmethoxyimines and prolinal oxime ethers. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5827-5830.	2.2	12
67	A short entry to enantiopure 2-substituted 1,4-benzodioxanes by efficient resolution methods. Tetrahedron: Asymmetry, 2003, 14, 3779-3785.	1.8	47
68	Resolution of 1-phenyl-2-(p-tolyl)ethylamine via diastereomeric salt formation. Tetrahedron: Asymmetry, 2003, 14, 2247-2251.	1.8	6
69	Highly efficient resolutions with isopropylidene glycerol 3-carboxy-2-naphthoate. Tetrahedron: Asymmetry, 2002, 13, 2277-2282.	1.8	7