
Maite Iriarte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5614973/publications.pdf Version: 2024-02-01

MAITE DIADTE

#	Article	IF	CITATIONS
1	A Brucella melitensis H38î"wbkF rough mutant protects against Brucella ovis in rams. Veterinary Research, 2022, 53, 16.	3.0	3
2	The Phospholipid N-Methyltransferase and Phosphatidylcholine Synthase Pathways and the ChoXWV Choline Uptake System Involved in Phosphatidylcholine Synthesis Are Widely Conserved in Most, but Not All Brucella Species. Frontiers in Microbiology, 2021, 12, 614243.	3.5	6
3	Brucella abortus S19 GFP-tagged vaccine allows the serological identification of vaccinated cattle. PLoS ONE, 2021, 16, e0260288.	2.5	6
4	Development of attenuated live vaccine candidates against swine brucellosis in a non-zoonotic B. suis biovar 2 background. Veterinary Research, 2020, 51, 92.	3.0	6
5	Disruption of pyruvate phosphate dikinase in Brucella ovis PA CO2-dependent and independent strains generates attenuation in the mouse model. Veterinary Research, 2020, 51, 101.	3.0	3
6	Glucose Oxidation to Pyruvate Is Not Essential for Brucella suis Biovar 5 Virulence in the Mouse Model. Frontiers in Microbiology, 2020, 11, 620049.	3.5	2
7	Rev1 wbdR tagged vaccines against Brucella ovis. Veterinary Research, 2019, 50, 95.	3.0	8
8	<scp>GFP</scp> tagging of <i>Brucella melitensis</i> Rev1 allows the identification of vaccinated sheep. Transboundary and Emerging Diseases, 2019, 66, 505-516.	3.0	7
9	<i>Brucella</i> central carbon metabolism: an update. Critical Reviews in Microbiology, 2018, 44, 182-211.	6.1	34
10	WadD, a New Brucella Lipopolysaccharide Core Glycosyltransferase Identified by Genomic Search and Phenotypic Characterization. Frontiers in Microbiology, 2018, 9, 2293.	3.5	12
11	The CO2-dependence of Brucella ovis and Brucella abortus biovars is caused by defective carbonic anhydrases. Veterinary Research, 2018, 49, 85.	3.0	16
12	The Fast-Growing Brucella suis Biovar 5 Depends on Phosphoenolpyruvate Carboxykinase and Pyruvate Phosphate Dikinase but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases or Isocitrate Lyase for Full Virulence in Laboratory Models. Frontiers in Microbiology, 2018, 9, 641.	3.5	10
13	Genomic Insertion of a Heterologous Acetyltransferase Generates a New Lipopolysaccharide Antigenic Structure in Brucella abortus and Brucella melitensis. Frontiers in Microbiology, 2018, 9, 1092.	3.5	16
14	Identification of lptA, lpxE, and lpxO, Three Genes Involved in the Remodeling of Brucella Cell Envelope. Frontiers in Microbiology, 2017, 8, 2657.	3.5	5
15	Structural Studies of Lipopolysaccharide-defective Mutants from Brucella melitensis Identify a Core Oligosaccharide Critical in Virulence. Journal of Biological Chemistry, 2016, 291, 7727-7741.	3.4	76
16	The identification of wadB, a new glycosyltransferase gene, confirms the branched structure and the role in virulence of the lipopolysaccharide core of Brucella abortus. Microbial Pathogenesis, 2014, 73, 53-59.	2.9	32
17	Mutants in the lipopolysaccharide of Brucella ovis are attenuated and protect against B. ovis infection in mice. Veterinary Research, 2014, 45, 72.	3.0	34
18	Brucella abortus Depends on Pyruvate Phosphate Dikinase and Malic Enzyme but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases for Full Virulence in Laboratory Models. Journal of Bacteriology, 2014, 196, 3045-3057.	2.2	43

MAITE IRIARTE

#	Article	IF	CITATIONS
19	Mutants in the lipopolysaccharide of. Veterinary Research, 2014, 45, 72.	3.0	9
20	Lipopolysaccharide as a target for brucellosis vaccine design. Microbial Pathogenesis, 2013, 58, 29-34.	2.9	38
21	The Epitopic and Structural Characterization of Brucella suis Biovar 2 O-Polysaccharide Demonstrates the Existence of a New M-Negative C-Negative Smooth Brucella Serovar. PLoS ONE, 2013, 8, e53941.	2.5	37
22	The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition. PLoS Pathogens, 2012, 8, e1002675.	4.7	140
23	Identification and functional analysis of the cyclopropane fatty acid synthase of Brucella abortus. Microbiology (United Kingdom), 2012, 158, 1037-1044.	1.8	17
24	DGHM 2012. International Journal of Medical Microbiology, 2012, 302, 3-155.	3.6	2
25	Brucella abortus Ornithine Lipids Are Dispensable Outer Membrane Components Devoid of a Marked Pathogen-Associated Molecular Pattern. PLoS ONE, 2011, 6, e16030.	2.5	36
26	The Differential Interaction of Brucella and Ochrobactrum with Innate Immunity Reveals Traits Related to the Evolution of Stealthy Pathogens. PLoS ONE, 2009, 4, e5893.	2.5	60
27	Brucellosis Vaccines: Assessment of Brucella melitensis Lipopolysaccharide Rough Mutants Defective in Core and O-Polysaccharide Synthesis and Export. PLoS ONE, 2008, 3, e2760.	2.5	159
28	Thermodynamic Analysis of the Lipopolysaccharide-Dependent Resistance of Gram-Negative Bacteria against Polymyxin B. Biophysical Journal, 2007, 92, 2796-2805.	0.5	54
29	Synthesis of phosphatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cellular Microbiology, 2006, 8, 1322-1335.	2.1	108
30	Yersinia enterocolitica can deliver Yop proteins into a wide range of cell types: Development of a delivery system for heterologous proteins. European Journal of Cell Biology, 2000, 79, 659-671.	3.6	47
31	Identification of SycN, YscX, and YscY, Three New Elements of the <i>Yersinia</i> Yop Virulon. Journal of Bacteriology, 1999, 181, 675-680.	2.2	64
32	TyeA, a protein involved in control of Yop release and in translocation of Yersinia Yop effectors. EMBO Journal, 1998, 17, 1907-1918.	7.8	149
33	Heparin interferes with translocation of Yop proteins into HeLa cells and binds to LcrG, a regulatory component of the Yersinia Yop apparatus. Molecular Microbiology, 1998, 27, 425-436.	2.5	63
34	YopT, a newYersiniaYop effector protein, affects the cytoskeleton of host cells. Molecular Microbiology, 1998, 29, 915-929.	2.5	237
35	LcrG is Required for Efficient Translocation of <i>Yersinia</i> Yop Effector Proteins into Eukaryotic Cells. Infection and Immunity, 1998, 66, 2976-2979.	2.2	55
36	The Virulence Plasmid of <i>Yersinia</i> , an Antihost Genome. Microbiology and Molecular Biology Reviews, 1998, 62, 1315-1352.	6.6	715

MAITE IRIARTE

14

#	Article	IF	CITATIONS
37	Virulence and arsenic resistance in Yersiniae. Journal of Bacteriology, 1997, 179, 612-619.	2.2	121
38	YscM1 and YscM2, two Yersinia enterocolitica proteins causing downregulation of yop transcription. Molecular Microbiology, 1997, 26, 833-843.	2.5	92
39	Status of YopM and YopN in the Yersinia Yop virulon: YopM of Y.enterocolitica is internalized inside the cytosol of PU5-1.8 macrophages by the YopB, D, N delivery apparatus EMBO Journal, 1996, 15, 5191-5201.	7.8	177
40	Status of YopM and YopN in the Yersinia Yop virulon: YopM of Y.enterocolitica is internalized inside the cytosol of PU5-1.8 macrophages by the YopB, D, N delivery apparatus. EMBO Journal, 1996, 15, 5191-201.	7.8	109
41	MyfF, an element of the network regulating the synthesis of fibrillae in Yersinia enterocolitica. Journal of Bacteriology, 1995, 177, 738-744.	2.2	52
42	The fliA gene encoding sigma 28 in Yersinia enterocolitica. Journal of Bacteriology, 1995, 177, 2299-2304.	2.2	47
43	Environmental Control of Virulence Functions and Signal Transduction in Yersinia Enterocolitica. Medical Intelligence Unit, 1995, , 95-110.	0.2	12
44	The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors. Infection and Immunity, 1995, 63, 1840-1847.	2.2	89
45	The Myf fibrillae of Yersinia enterocolitica. Molecular Microbiology, 1993, 9, 507-520.	2.5	94

The 70-Kilobase Virulence Plasmid of Yersiniae. , 0, , 91-126.