
Lucy A Bosworth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5614772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The conjunctival extracellular matrix, related disorders and development of substrates for conjunctival restoration. Ocular Surface, 2023, 28, 322-335.	4.4	10
2	Melt electro-written scaffolds with box-architecture support orthogonally oriented collagen. Biofabrication, 2022, 14, 015015.	7.1	8
3	An Optimized Method to Decellularize Human Trabecular Meshwork. Bioengineering, 2022, 9, 194.	3.5	4
4	Material Characterisation and Stratification of Conjunctival Epithelial Cells on Electrospun Poly(ε-Caprolactone) Fibres Loaded with Decellularised Tissue Matrices. Pharmaceutics, 2021, 13, 318.	4.5	14
5	Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress report. Biomaterials and Biosystems, 2021, 1, 100011.	2.2	5
6	Biological tissues and components, and synthetic substrates for conjunctival cell transplantation. Ocular Surface, 2021, 22, 15-26.	4.4	7
7	Material Characterization of PCL:PLLA Electrospun Fibers Following Six Months Degradation In Vitro. Polymers, 2020, 12, 700.	4.5	25
8	Mimicking the Annulus Fibrosus Using Electrospun Polyester Blended Scaffolds. Nanomaterials, 2019, 9, 537.	4.1	21
9	Enhancing Biocompatibility without Compromising Material Properties: An Optimised NaOH Treatment for Electrospun Polycaprolactone Fibres. Journal of Nanomaterials, 2019, 2019, 1-11.	2.7	39
10	Effect of Topography and Physical Stimulus on hMSC Phenotype Using a 3D In Vitro Model. Nanomaterials, 2019, 9, 522.	4.1	6
11	Tissue Engineering the Annulus Fibrosus Using 3D Rings of Electrospun PCL:PLLA Angle-Ply Nanofiber Sheets. Frontiers in Bioengineering and Biotechnology, 2019, 7, 437.	4.1	29
12	Cell response to sterilized electrospun poly(É›â€caprolactone) scaffolds to aid tendon regeneration <i>in vivo</i> . Journal of Biomedical Materials Research - Part A, 2017, 105, 389-397.	4.0	29
13	Optimizing Attachment of Human Mesenchymal Stem Cells on Poly(ε-caprolactone) Electrospun Yarns. Journal of Visualized Experiments, 2015, , .	0.3	1
14	Travelling along the Clinical Roadmap: Developing Electrospun Scaffolds for Tendon Repair. Conference Papers in Science, 2014, 2014, 1-6.	0.3	12
15	Dynamic loading of electrospun yarns guides mesenchymal stem cells towards a tendon lineage. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 175-183.	3.1	58
16	Investigation of 2D and 3D electrospun scaffolds intended for tendon repair. Journal of Materials Science: Materials in Medicine, 2013, 24, 1605-1614.	3.6	76
17	State of the art composites comprising electrospun fibres coupled with hydrogels: a review. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 322-335.	3.3	126
18	Medical grade sterilization affects synthetic polymer film properties intended for peripheral nerve repair: an in vitro study. Journal of Materials Science: Materials in Medicine, 2013, 24, 701-711.	3.6	6

#	Article	IF	CITATIONS
19	Acetone, a Sustainable Solvent for Electrospinning Poly(Îμ-Caprolactone) Fibres: Effect of Varying Parameters and Solution Concentrations on Fibre Diameter. Journal of Polymers and the Environment, 2012, 20, 879-886.	5.0	62
20	Gamma irradiation of electrospun poly(ε aprolactone) fibers affects material properties but not cell response. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 870-876.	2.1	42
21	Electrospinning for tissue regeneration. , 2011, , .		39
22	Physicochemical characterisation of degrading polycaprolactone scaffolds. Polymer Degradation and Stability, 2010, 95, 2269-2276.	5.8	115
23	Electrospun nanofibres of polycaprolactone, and their use for tendon regeneration. International Journal of Nano and Biomaterials, 2008, 1, 263.	0.1	18