David J Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5614638/publications.pdf

Version: 2024-02-01

88 2,510 27 46
papers citations h-index g-index

90 90 90 3872 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Quantifying the concentration dependence of sedimentation coefficients for globular macromolecules: a continuing age-old problem. Biophysical Reviews, 2021, 13, 273-288.	1.5	8
2	Thermodynamics of semi-specific ligand recognition: the binding of dipeptides to the E.coli dipeptide binding protein DppA. European Biophysics Journal, 2021, 50, 1103-1110.	1.2	4
3	Engineering the Human Fc Region Enables Direct Cell Killing by Cancer Glycan–Targeting Antibodies without the Need for Immune Effector Cells or Complement. Cancer Research, 2020, 80, 3399-3412.	0.4	7
4	Structure-Guided Enhancement of Selectivity of Chemical Probe Inhibitors Targeting Bacterial Seryl-tRNA Synthetase. Journal of Medicinal Chemistry, 2019, 62, 9703-9717.	2.9	5
5	Experimental determination of second virial coefficients by small-angle X-ray scattering: a problem revisited. European Biophysics Journal, 2019, 48, 781-787.	1.2	O
6	Use of molecular crowding for the detection of protein self-association by size-exclusion chromatography. Analytical Biochemistry, 2019, 584, 113392.	1.1	2
7	Structural modeling of an outer membrane electron conduit from a metal-reducing bacterium suggests electron transfer via periplasmic redox partners. Journal of Biological Chemistry, 2018, 293, 8103-8112.	1.6	51
8	Allowance for boundary sharpening in the determination of diffusion coefficients by sedimentation velocity: a historical perspective. Biophysical Reviews, 2018, 10, 3-13.	1.5	4
9	Allowance for radial dilution in evaluating the concentration dependence of sedimentation coefficients for globular proteins. European Biophysics Journal, 2018, 47, 291-295.	1.2	9
10	The role of the jaw subdomain of peptidoglycan glycosyltransferases for lipid II polymerization. Cell Surface, 2018, 2, 54-66.	1.5	8
11	Thermodynamics and Thermodynamic Nonideality. , 2018, , 1-8.		О
12	Intrinsic disorder in the partitioning protein KorB persists after co-operative complex formation with operator DNA and KorA. Biochemical Journal, 2017, 474, 3121-3135.	1.7	6
13	The Vip3Ag4 Insecticidal Protoxin from Bacillus thuringiensis Adopts A Tetrameric Configuration That Is Maintained on Proteolysis. Toxins, 2017, 9, 165.	1.5	36
14	STAT2 Is a Pervasive Cytokine Regulator due to Its Inhibition of STAT1 in Multiple Signaling Pathways. PLoS Biology, 2016, 14, e2000117.	2.6	55
15	SilE is an intrinsically disordered periplasmic "molecular sponge―involved in bacterial silver resistance. Molecular Microbiology, 2016, 101, 731-742.	1.2	38
16	Accounting for thermodynamic non-ideality in the Guinier region of small-angle scattering data of proteins. Biophysical Reviews, 2016, 8, 441-444.	1.5	2
17	Defining the Intrinsically Disordered C-Terminal Domain of SSB Reveals DNA-Mediated Compaction. Journal of Molecular Biology, 2016, 428, 357-364.	2.0	12
18	Flexibility of KorA, a plasmid-encoded, global transcription regulator, in the presence and the absence of its operator. Nucleic Acids Research, 2016, 44, 4947-4956.	6.5	6

#	Article	IF	CITATIONS
19	Analytical ultracentrifugation: A versatile tool for the characterisation of macromolecular complexes in solution. Methods, 2016, 95, 55-61.	1.9	29
20	Atomistic modelling of scattering data in the Collaborative Computational Project for Small Angle Scattering (CCP-SAS). Journal of Applied Crystallography, 2016, 49, 1861-1875.	1.9	67
21	Characterization of Intrinsically Disordered Proteins by Analytical Ultracentrifugation. Methods in Enzymology, 2015, 562, 225-239.	0.4	6
22	Evaluation of diffusion coefficients by means of an approximate steady-state condition in sedimentation velocity distributions. Analytical Biochemistry, 2015, 490, 20-25.	1.1	4
23	The osmotic second virial coefficient for protein self-interaction: Use and misuse to describe thermodynamic nonideality. Analytical Biochemistry, 2015, 490, 55-65.	1.1	18
24	N-terminal Domain of Prion Protein Directs Its Oligomeric Association. Journal of Biological Chemistry, 2014, 289, 25497-25508.	1.6	20
25	Concentration dependence of translational diffusion coefficients for globular proteins. Analyst, The, 2014, 139, 6242-6248.	1.7	27
26	Structure and Catalytic Regulatory Function of Ubiquitin Specific Protease 11 N-Terminal and Ubiquitin-like Domains. Biochemistry, 2014, 53, 2966-2978.	1.2	34
27	Enthalpy/Entropy Compensation Effects from Cavity Desolvation Underpin Broad Ligand Binding Selectivity for Rat Odorant Binding Protein 3. Biochemistry, 2014, 53, 2371-2379.	1.2	20
28	A Hydrodynamic Comparison of Solution and Gas Phase Proteins and Their Complexes. Journal of Physical Chemistry B, 2014, 118, 8489-8495.	1.2	31
29	Engineering a reagentless biosensor for single-stranded DNA to measure real-time helicase activity in Bacillus. Biosensors and Bioelectronics, 2014, 61, 579-586.	5. 3	6
30	Anomalous Small Angle X-Ray Scattering Simulations: Proof of Concept for Distance Measurements for Nanoparticle-Labelled Biomacromolecules in Solution. PLoS ONE, 2014, 9, e95664.	1.1	10
31	Crystal structure of signal regulatory protein gamma (SIRPγ) in complex with an antibody Fab fragment. BMC Structural Biology, 2013, 13, 13.	2.3	10
32	The lipidome and proteome of oil bodies from Helianthus annuus (common sunflower). Journal of Chemical Biology, 2013, 6, 63-76.	2.2	42
33	A potential for overestimating the absolute magnitudes of second virial coefficients by small-angle X-ray scattering. Analytical Biochemistry, 2013, 435, 159-165.	1.1	9
34	Synthesis of α-Glucan in Mycobacteria Involves a Hetero-octameric Complex of Trehalose Synthase TreS and Maltokinase Pep2. ACS Chemical Biology, 2013, 8, 2245-2255.	1.6	27
35	Sedimentation velocity of intrinsically disordered proteins: what information can we actually obtain?. Molecular BioSystems, 2012, 8, 378-380.	2.9	1
36	Effects of the Oncogenic V ₆₆₄ E Mutation on Membrane Insertion, Structure, and Sequence-Dependent Interactions of the Neu Transmembrane Domain in Micelles and Model Membranes: An Integrated Biophysical and Simulation Study. Biochemistry, 2012, 51, 2558-2568.	1.2	18

#	Article	IF	CITATIONS
37	Allowance for effects of thermodynamic nonideality in sedimentation equilibrium distributions reflecting protein dimerization. Analytical Biochemistry, 2012, 422, 28-32.	1.1	7
38	Structure of the USP15 N-Terminal Domains: A \hat{l}^2 -Hairpin Mediates Close Association between the DUSP and UBL Domains. Biochemistry, 2011, 50, 7995-8004.	1.2	25
39	Examination of the Discrepancy between Size Estimates for Ovalbumin from Small-Angle X-ray Scattering and Other Physicochemical Measurements. Journal of Physical Chemistry B, 2011, 115, 10725-10729.	1.2	10
40	When a module is not a domain: the case of the REJ module and the redefinition of the architecture of polycystin-1. Biochemical Journal, 2011, 435, 651-660.	1.7	14
41	An Undecided Coiled Coil. Journal of Biological Chemistry, 2011, 286, 27537-27547.	1.6	33
42	Dynamics of Odorant Binding to Thin Aqueous Films of Rat-OBP3. Chemical Senses, 2011, 36, 659-671.	1.1	15
43	DyBOBS: A Dynamic Biomimetic Assay for Odorant-Binding to Odor-Binding Protein. Chemosensory Perception, 2010, 3, 108-117.	0.7	10
44	Allowance for the effect of protein charge in the characterization of nonideal solute self-association by sedimentation equilibrium. Biophysical Chemistry, 2010, 149, 83-91.	1.5	13
45	DnaB proteolysis in vivo regulates oligomerization and its localization at oriC in Bacillus subtilis. Nucleic Acids Research, 2010, 38, 2851-2864.	6.5	15
46	Order and Disorder in the Domain Organization of the Plasmid Partition Protein KorB. Journal of Biological Chemistry, 2010, 285, 15440-15449.	1.6	11
47	RepD-mediated recruitment of PcrA helicase at the Staphylococcus aureus pC221 plasmid replication origin, oriD. Nucleic Acids Research, 2010, 38, 1874-1888.	6.5	13
48	Characterisation of a GroEL Single-Ring Mutant that Supports Growth of Escherichia coli and Has GroES-Dependent ATPase Activity. Journal of Molecular Biology, 2010, 396, 1271-1283.	2.0	24
49	Rapid Odorant Release in Mammalian Odour Binding Proteins Facilitates Their Temporal Coupling to Odorant Signals. Journal of Molecular Biology, 2010, 404, 372-380.	2.0	16
50	Conformational Properties of Î ² -PrP. Journal of Biological Chemistry, 2009, 284, 21981-21990.	1.6	34
51	Structure of rat odorant-binding protein OBP1 at 1.6â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 403-410.	2.5	17
52	Comparison of Methods for Characterizing Nonideal Solute Self-Association by Sedimentation Equilibrium. Biophysical Journal, 2009, 97, 886-896.	0.2	18
53	Role of Odorant Binding Proteins: Comparing Hypothetical Mechanisms with Experimental Data. Chemosensory Perception, 2008, 1, 153-162.	0.7	24
54	The shock of the old: hydrodynamics for the masses. Biochemical Society Transactions, 2008, 36, 766-770.	1.6	2

#	Article	lF	CITATIONS
55	Structural Characterisation of the Insecticidal Toxin XptA1, Reveals a 1.15ÂMDa Tetramer with a Cage-like Structure. Journal of Molecular Biology, 2007, 366, 1558-1568.	2.0	37
56	FtsZ Polymer-bundling by the Escherichia coli ZapA Orthologue, YgfE, Involves a Conformational Change in Bound GTP. Journal of Molecular Biology, 2007, 369, 210-221.	2.0	83
57	Dynamic Allostery in the Ring Protein TRAP. Journal of Molecular Biology, 2007, 371, 154-167.	2.0	24
58	A simpler analysis for the measurement of second virial coefficients by self-interaction chromatography. Analytical Biochemistry, 2007, 371, 21-25.	1.1	16
59	Dimerization of inositol monophosphatase Mycobacterium tuberculosis SuhB is not constitutive, but induced by binding of the activator Mg2+. BMC Structural Biology, 2007, 7, 55.	2.3	15
60	Domain swapping reveals that the C- and N-terminal domains of DnaG and DnaB, respectively, are functional homologues. Molecular Microbiology, 2007, 63, 1629-1639.	1.2	15
61	The 2â€oxoacid dehydrogenase multiâ€enzyme complex of the archaeon <i>Thermoplasma acidophilum</i> à€fâ^â€frecombinant expression, assembly and characterization. FEBS Journal, 2007, 274, 5406-5415.	2.2	26
62	The DNA-remodelling activity of DnaD is the sum of oligomerization and DNA-binding activities on separate domains. Molecular Microbiology, 2006, 60, 917-924.	1.2	33
63	Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO Journal, 2005, 24, 240-250.	3.5	214
64	Expression, purification and crystallization of the cell-division protein YgfE fromEscherichia coli. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 305-307.	0.7	0
65	Cleavage of Individual DNA Strands by the Different Subunits of the Heterodimeric Restriction Endonuclease BbvCl. Journal of Molecular Biology, 2005, 348, 641-653.	2.0	40
66	TheBacillus subtilisDnaD protein: a putative link between DNA remodeling and initiation of DNA replication. FEBS Letters, 2004, 577, 460-464.	1.3	26
67	Subunit Assembly for DNA Cleavage by Restriction Endonuclease SgrAl. Journal of Molecular Biology, 2003, 327, 579-591.	2.0	41
68	Multifunctional Xylooligosaccharide/Cephalosporin C Deacetylase Revealed by the Hexameric Structure of the Bacillus subtilis Enzyme at 1.9Ã Resolution. Journal of Molecular Biology, 2003, 330, 593-606.	2.0	67
69	Isolation and Characterisation of Mutants of GroEL that are Fully Functional as Single Rings. Journal of Molecular Biology, 2003, 332, 715-728.	2.0	52
70	Crystal Structures of the Liganded and Unliganded Nickel-binding Protein NikA from Escherichia coli. Journal of Biological Chemistry, 2003, 278, 50322-50329.	1.6	77
71	Effect of Protein Kinase A-mediated Phosphorylation on the Structure and Association Properties of the Enteropathogenic Escherichia coli Tir Virulence Protein. Journal of Biological Chemistry, 2003, 278, 25839-25846.	1.6	9
72	Creating Hetero-11-mers Composed of Wild-type and Mutant Subunits to Study RNA Binding to TRAP. Journal of Biological Chemistry, 2002, 277, 11838-11844.	1.6	22

#	Article	IF	CITATIONS
73	Structural Insights into the β-Mannosidase fromT. reeseiObtained by Synchrotron Small-Angle X-ray Solution Scattering Enhanced by X-ray Crystallographyâ€. Biochemistry, 2002, 41, 9370-9375.	1.2	19
74	Low resolution solution structure of the apo form of Escherichia coli haemoglobin protease Hbp. Journal of Molecular Biology, 2002, 315, 1179-1187.	2.0	25
75	Dimer formation and transcription activation in the sporulation response regulator SpoOA. Journal of Molecular Biology, 2002, 316, 235-245.	2.0	68
76	Insulin at pH 2: Structural Analysis of the Conditions Promoting Insulin Fibre Formation. Journal of Molecular Biology, 2002, 318, 479-490.	2.0	196
77	Screening Transthyretin Amyloid Fibril Inhibitors. Structure, 2002, 10, 851-863.	1.6	106
78	Oligomerization of the Bacillus subtilis division protein DivIVA. Microbiology (United Kingdom), 2002, 148, 807-813.	0.7	37
79	The Dimerization Interface of the Metastasis-associated Protein S100A4 (Mts1). Journal of Biological Chemistry, 2001, 276, 24212-24222.	1.6	53
80	Interaction of sigma factor ÏfN with Escherichia coli RNA polymerase core enzyme. Biochemical Journal, 2000, 352, 539.	1.7	3
81	Structure of the intact transactivation domain of the human papillomavirus E2 protein. Nature, 2000, 403, 805-809.	13.7	95
82	Metastasis-associated protein Mts1 (S100A4) inhibits CK2-mediated phosphorylation and self-assembly of the heavy chain of nonmuscle myosin. Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1498, 252-263.	1.9	53
83	Heterocomplex formation between metastasis-related protein S100A4 (Mts1) and S100A1 as revealed by the yeast two-hybrid system. FEBS Letters, 2000, 475, 187-191.	1.3	60
84	Interaction of Ïf70withEscherichia coliRNA polymerase core enzyme studied by surface plasmon resonance. FEBS Letters, 2000, 481, 281-284.	1.3	16
85	Interaction of sigma factor σN with Escherichia coli RNA polymerase core enzyme. Biochemical Journal, 2000, 352, 539-547.	1.7	7
86	Remodeling of the AB site of rat parvalbumin and oncomodulin into a canonical EF-hand. FEBS Journal, 1999, 264, 790-799.	0.2	17
87	Quaternary re-arrangement analysed by spectral enhancement: the interaction of a sporulation repressor with its antagonist 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 293, 997-1004.	2.0	25
88	Oligomerisation of TBP1 from Haloferax volcanii. , 0, , 93-96.		0