Adam S Wymore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5614518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microbes on decomposing litter in streams: entering on the leaf or colonizing in the water?. ISME Journal, 2022, 16, 717-725.	9.8	14
2	Shifting stoichiometry: Longâ€ŧerm trends in streamâ€dissolved organic matter reveal altered C:N ratios due to history of atmospheric acid deposition. Global Change Biology, 2022, 28, 98-114.	9.5	22
3	Land Use Overrides Stream Order and Season in Driving Dissolved Organic Matter Dynamics Throughout the Year in a River Network. Environmental Science & Technology, 2022, 56, 2009-2020.	10.0	17
4	Divergent Controls on Stream Greenhouse Gas Concentrations Across a Land-Use Gradient. Ecosystems, 2021, 24, 1299-1316.	3.4	24
5	Quantifying the frequency of synchronous carbon and nitrogen export to the river network. Biogeochemistry, 2021, 152, 1-12.	3.5	13
6	Nitrate uptake enhanced by availability of dissolved organic matter in tropical montane streams. Freshwater Science, 2021, 40, 65-76.	1.8	6
7	Luquillo Experimental Forest: Catchment science in the montane tropics. Hydrological Processes, 2021, 35, e14146.	2.6	12
8	The Lamprey River Hydrological Observatory: Suburbanization and changing seasonality. Hydrological Processes, 2021, 35, e14131.	2.6	10
9	Gradients of Anthropogenic Nutrient Enrichment Alter N Composition and DOM Stoichiometry in Freshwater Ecosystems. Global Biogeochemical Cycles, 2021, 35, e2021GB006953.	4.9	22
10	<scp>CHOSEN</scp> : A synthesis of hydrometeorological data from intensively monitored catchments and comparative analysis of hydrologic extremes. Hydrological Processes, 2021, 35, e14429.	2.6	4
11	Climate Variability Drives Watersheds Along a Transporterâ€īransformer Continuum. Geophysical Research Letters, 2021, 48, e2021GL094050.	4.0	10
12	Percentile-Range Indexed Mapping and Evaluation (PRIME): A new tool for long-term data discovery and application. Environmental Modelling and Software, 2020, 124, 104580.	4.5	4
13	Dissolved Organic Carbon and Nitrate Concentrationâ€Đischarge Behavior Across Scales: Land Use, Excursions, and Misclassification. Water Resources Research, 2020, 56, e2019WR027028.	4.2	34
14	Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams. Scientific Reports, 2020, 10, 8722.	3.3	41
15	Measuring the influence of environmental conditions on dissolved organic matter biodegradability and optical properties: a combined field and laboratory study. Biogeochemistry, 2020, 149, 37-52.	3.5	7
16	Fire severity, time since fire, and site-level characteristics influence streamwater chemistry at baseflow conditions in catchments of the Sierra Nevada, California, USA. Fire Ecology, 2019, 15, .	3.0	21
17	Hysteretic Response of Solutes and Turbidity at the Event Scale Across Forested Tropical Montane Watersheds. Frontiers in Earth Science, 2019, 7, .	1.8	30
18	LINX I and II: Lessons Learned and Emerging Questions. Frontiers in Environmental Science, 2019, 7, .	3.3	4

ADAM S WYMORE

#	Article	IF	CITATIONS
19	Using In‧itu Optical Sensors to Understand the Biogeochemistry of Dissolved Organic Matter Across a Stream Network. Water Resources Research, 2018, 54, 2949-2958.	4.2	27
20	Effects of plant species on stream bacterial communities via leachate from leaf litter. Hydrobiologia, 2018, 807, 131-144.	2.0	9
21	Litter identity affects assimilation of carbon and nitrogen by a shredding caddisfly. Ecosphere, 2018, 9, e02340.	2.2	11
22	Multiyear Trends in Solute Concentrations and Fluxes From a Suburban Watershed: Evaluating Effects of 100â€Year Flood Events. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3072-3087.	3.0	18
23	Growing new generations of critical zone scientists. Earth Surface Processes and Landforms, 2017, 42, 2498-2502.	2.5	7
24	Critical zone structure controls concentrationâ€discharge relationships and solute generation in forested tropical montane watersheds. Water Resources Research, 2017, 53, 6279-6295.	4.2	56
25	Integrated Interdisciplinary Science of the Critical Zone as a Foundational Curriculum for Addressing Issues of Environmental Sustainability. Journal of Geoscience Education, 2017, 65, 136-145.	1.4	8
26	Understanding Dissolved Organic Matter Biogeochemistry Through In Situ Nutrient Manipulations in Stream Ecosystems. Journal of Visualized Experiments, 2016, , .	0.3	1
27	DOC:NO ₃ ^{â^'} ratios and NO ₃ ^{â^'} uptake in forested headwater streams. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 205-217.	3.0	42
28	Nitrate uptake across biomes and the influence of elemental stoichiometry: A new look at LINX II. Global Biogeochemical Cycles, 2016, 30, 1183-1191.	4.9	30
29	The Influence of Time and Plant Species on the Composition of the Decomposing Bacterial Community in a Stream Ecosystem. Microbial Ecology, 2016, 71, 825-834.	2.8	19
30	Leaf-litter leachate is distinct in optical properties and bioavailability to stream heterotrophs. Freshwater Science, 2015, 34, 857-866.	1.8	31
31	Nutrient uptake along a fire gradient in boreal streams of Central Siberia. Freshwater Science, 2015, 34, 1443-1456.	1.8	30
32	Direct response of dissolved organic nitrogen to nitrate availability in headwater streams. Biogeochemistry, 2015, 126, 1-10.	3.5	33
33	Indirect influences of a major drought on leaf litter quality and decomposition in a southwestern stream. Fundamental and Applied Limnology, 2014, 184, 1-10.	0.7	10
34	Community Genetics Applications for Forest Biodiversity and Policy: Planning for the Future. Forestry Sciences, 2014, , 707-725.	0.4	4
35	Contrasting rRNA gene abundance patterns for aquatic fungi and bacteria in response to leaf-litter chemistry. Freshwater Science, 2013, 32, 663-672.	1.8	26
36	Genes to ecosystems: exploring the frontiers of ecology with one of the smallest biological units. New Phytologist, 2011, 191, 19-36.	7.3	42

#	Article	IF	CITATIONS
37	Influence of watershed suburbanization on leaf litter decomposition and microbial activity. Hydrobiologia, 0, , 1.	2.0	0