Ran Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5614366/publications.pdf

Version: 2024-02-01

	840776	839539
389	11	18
citations	h-index	g-index
30	30	396
docs citations	times ranked	citing authors
	30	389 11 citations h-index 30 30

#	Article	IF	CITATIONS
1	Polymorphism of Kdo-Based Glycolipids: The Elaborately Determined Stable and Dynamic Bicelles. CCS Chemistry, 2022, 4, 2228-2238.	7.8	9
2	Molecular dynamic simulation: Study on the recognition mechanism of linear \hat{l}^2 -(1 \hat{A} â†' \hat{A} 3)-D-glucan by Dectin-1. Carbohydrate Polymers, 2022, 286, 119276.	10.2	5
3	A Comprehensive Landscape for Fibril Association Behaviors Encoded Synergistically by Saccharides and Peptides. Journal of the American Chemical Society, 2021, 143, 6622-6633.	13.7	19
4	Molecular dynamic simulation: Structural insights of multi-stranded curdlan in aqueous solution. Carbohydrate Polymers, 2021, 261, 117844.	10.2	9
5	Molecular dynamic simulation: Conformational properties of single-stranded curdlan in aqueous solution. Carbohydrate Polymers, 2020, 250, 116906.	10.2	8
6	Dynamics Transition of Polymer Films Induced by Polymer–Obstacle Entanglements on Rough Surfaces. Macromolecules, 2020, 53, 3873-3882.	4.8	7
7	Preparation and Properties of High-performance Polyimide Copolymer Fibers Derived from 5-Amino-2-(2-hydroxy-5-aminobenzene)-benzoxazole. Chinese Journal of Polymer Science (English) Tj ETQq1 1 0.	.78 4.3 14 rg	gB17/Overlock
8	Aggregation of amyloid peptides into fibrils driven by nanoparticles and their curvature effect. Physical Chemistry Chemical Physics, 2019, 21, 1784-1790.	2.8	9
9	Unusual self-diffusion behaviors of polymer adsorbed on rough surfaces. Journal of Chemical Physics, 2019, 150, 064902.	3.0	9
10	Inconsistency of Diffusion and Relaxation of Ring Polymers Adsorbed on Rough Surfaces. Journal of Physical Chemistry B, 2019, 123, 9712-9718.	2.6	5
11	Effects of surface roughness on the self-diffusion dynamics of a single polymer. Soft Matter, 2018, 14, 3550-3556.	2.7	16
12	Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies. Journal of Physical Chemistry B, 2018, 122, 6656-6665.	2.6	11
13	Effects of Concentration and Ionization Degree of Anchoring Cationic Polymers on the Lateral Heterogeneity of Anionic Lipid Monolayers. Journal of Physical Chemistry B, 2017, 121, 984-994.	2.6	7
14	Role of Salt and Water in the Plasticization of PDAC/PSS Polyelectrolyte Assemblies. Journal of Physical Chemistry B, 2017, 121, 322-333.	2.6	72
15	Adsorption of a hydrophobic cationic polypeptide onto acidic lipid membrane. Polymer, 2017, 122, 125-138.	3.8	7
16	Spatial Rearrangement and Mobility Heterogeneity of an Anionic Lipid Monolayer Induced by the Anchoring of Cationic Semiflexible Polymer Chains. Polymers, 2016, 8, 235.	4.5	3
17	Monte Carlo study on a complex of cationic polymers and anionic lipid monolayer. Polymer, 2016, 104, 138-148.	3.8	3
18	Study of Hydrophobic Clustering in Partially Sulfonated Polystyrene Solutions with a Systematic Coarse-Grained Model. Macromolecules, 2016, 49, 7571-7580.	4.8	5

#	Article	IF	Citations
19	Effects of Chain Rigidity on the Adsorption of a Polyelectrolyte Chain on Mixed Lipid Monolayer: A Monte Carlo Study. Journal of Physical Chemistry B, 2015, 119, 6041-6049.	2.6	15
20	Compositional redistribution and dynamic heterogeneity in mixed lipid membrane induced by polyelectrolyte adsorption: Effects of chain rigidity. European Physical Journal E, 2014, 37, 27.	1.6	6
21	Effect of polyelectrolyte adsorption on lateral distribution and dynamics of anionic lipids: a Monte Carlo study of a coarse-grain model. European Biophysics Journal, 2014, 43, 377-391.	2.2	8
22	Topological effects on capsomer–polyion co-assembly. Journal of Chemical Physics, 2014, 140, 244903.	3.0	14
23	Monte Carlo Study of Polyelectrolyte Adsorption on Mixed Lipid Membrane. Journal of Physical Chemistry B, 2013, 117, 989-1002.	2.6	26
24	Icosahedral capsid formation by capsomer subunits and a semiflexible polyion. RSC Advances, 2013, 3, 25258.	3.6	15
25	Icosahedral capsid formation by capsomers and short polyions. Journal of Chemical Physics, 2013, 138, 154901.	3.0	21
26	Regulation of anionic lipids in binary membrane upon the adsorption of polyelectrolyte: A Monte Carlo simulation. AIP Advances, 2013, 3, .	1.3	17
27	Physical Gelation of Polypeptide–Polyelectrolyte–Polypeptide (ABA) Copolymer in Solution. Macromolecules, 2012, 45, 6201-6209.	4.8	10
28	Salt Effects on Sol–Gel Transition of Telechelic Polyelectrolytes in Aqueous Solutions. Macromolecules, 2012, 45, 555-562.	4.8	7
29	Effect of the concentration on sol–gel transition of telechelic polyelectrolytes. Journal of Chemical Physics, 2011, 134, 034903.	3.0	14
30	Conformational Study on Solâ^'Gel Transition in Telechelic Polyelectrolytes Solutions. Journal of Physical Chemistry B, 2010, 114, 3449-3456.	2.6	25