
Carole L Yauk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5614225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Incorporating New Technologies Into Toxicity Testing and Risk Assessment: Moving From 21st Century Vision to a Data-Driven Framework. Toxicological Sciences, 2013, 136, 4-18.	1.4	230
2	MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicology and Applied Pharmacology, 2015, 284, 16-32.	1.3	159
3	Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[<i>a</i>]pyrene in drinking water. Critical Reviews in Toxicology, 2015, 45, 1-43.	1.9	135
4	Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment. Archives of Toxicology, 2017, 91, 2045-2065.	1.9	132
5	BMDExpress 2: enhanced transcriptomic dose-response analysis workflow. Bioinformatics, 2019, 35, 1780-1782.	1.8	123
6	Nano-risk Science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes. Particle and Fibre Toxicology, 2015, 13, 15.	2.8	108
7	Applying 'omics technologies in chemicals risk assessment: Report of an ECETOC workshop. Regulatory Toxicology and Pharmacology, 2017, 91, S3-S13.	1.3	102
8	From sperm to offspring: Assessing the heritable genetic consequences of paternal smoking and potential public health impacts. Mutation Research - Reviews in Mutation Research, 2017, 773, 26-50.	2.4	92
9	The challenge of the application of 'omics technologies in chemicals risk assessment: Background and outlook. Regulatory Toxicology and Pharmacology, 2017, 91, S14-S26.	1.3	92
10	Development of a toxicogenomics signature for genotoxicity using a doseâ€optimization and informatics strategy in human cells. Environmental and Molecular Mutagenesis, 2015, 56, 505-519.	0.9	89
11	Neurotoxicity may be an overlooked consequence of benzo[a]pyrene exposure that is relevant to human health risk assessment. Mutation Research - Reviews in Mutation Research, 2015, 764, 64-89.	2.4	83
12	The Next Generation of Risk Assessment Multi-Year Study—Highlights of Findings, Applications to Risk Assessment, and Future Directions. Environmental Health Perspectives, 2016, 124, 1671-1682.	2.8	74
13	Case study on the utility of hepatic global gene expression profiling in the risk assessment of the carcinogen furan. Toxicology and Applied Pharmacology, 2014, 274, 63-77.	1.3	70
14	Development and validation of a high-throughput transcriptomic biomarker to address 21st century genetic toxicology needs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10881-E10889.	3.3	70
15	Approaches for identifying germ cell mutagens: Report of the 2013 IWGT workshop on germ cell assaysâ~†. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2015, 783, 36-54.	0.9	69
16	Technical guide for applications of gene expression profiling in human health risk assessment of environmental chemicals. Regulatory Toxicology and Pharmacology, 2015, 72, 292-309.	1.3	60
17	Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease. Toxicology and Applied Pharmacology, 2015, 283, 210-222.	1.3	57
18	Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations. Environmental and Molecular Mutagenesis, 2017, 58, 264-283.	0.9	57

#	Article	IF	CITATIONS
19	Transcriptional profiling identifies physicochemical properties of nanomaterials that are determinants of the in vivo pulmonary response. Environmental and Molecular Mutagenesis, 2015, 56, 245-264.	0.9	54
20	Paternal lifestyle as a potential source of germline mutations transmitted to offspring. FASEB Journal, 2013, 27, 2873-2879.	0.2	52
21	Integration of metabolic activation with a predictive toxicogenomics signature to classify genotoxic versus nongenotoxic chemicals in human TK 6 cells. Environmental and Molecular Mutagenesis, 2015, 56, 520-534.	0.9	52
22	Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure. Toxicology, 2013, 303, 83-93.	2.0	50
23	Integrating toxicogenomics into human health risk assessment: Lessons learned from the benzo[<i>a</i>]pyrene case study. Critical Reviews in Toxicology, 2015, 45, 44-52.	1.9	50
24	Meta-analysis of transcriptomic responses as a means to identify pulmonary disease outcomes for engineered nanomaterials. Particle and Fibre Toxicology, 2015, 13, 25.	2.8	48
25	Toxicogenomic assessment of liver responses following subchronic exposure to furan in Fischer F344 rats. Archives of Toxicology, 2016, 90, 1351-1367.	1.9	48
26	Bisphenol A and Bisphenol S Induce Distinct Transcriptional Profiles in Differentiating Human Primary Preadipocytes. PLoS ONE, 2016, 11, e0163318.	1.1	46
27	Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regulatory Toxicology and Pharmacology, 2021, 125, 105020.	1.3	46
28	Subchronic Oral Exposure to Benzo(a)pyrene Leads to Distinct Transcriptomic Changes in the Lungs That Are Related to Carcinogenesis. Toxicological Sciences, 2012, 129, 213-224.	1.4	44
29	Impact of Genomics Platform and Statistical Filtering on Transcriptional Benchmark Doses (BMD) and Multiple Approaches for Selection of Chemical Point of Departure (PoD). PLoS ONE, 2015, 10, e0136764.	1.1	44
30	Cross-platform analysis of global microRNA expression technologies. BMC Genomics, 2010, 11, 330.	1.2	43
31	Application of the TGxâ€28.65 transcriptomic biomarker to classify genotoxic and nonâ€genotoxic chemicals in human TK6 cells in the presence of rat liver S9. Environmental and Molecular Mutagenesis, 2016, 57, 243-260.	0.9	40
32	High-Throughput Transcriptomic Analysis of Human Primary Hepatocyte Spheroids Exposed to Per- and Polyfluoroalkyl Substances as a Platform for Relative Potency Characterization. Toxicological Sciences, 2021, 181, 199-214.	1.4	39
33	Impact of Cigarette Smoke on the Human and Mouse Lungs: A Gene-Expression Comparison Study. PLoS ONE, 2014, 9, e92498.	1.1	37
34	Thyroid hormone-regulated gene expression in juvenile mouse liver: identification of thyroid response elements using microarray profiling and in silico analyses. BMC Genomics, 2011, 12, 634.	1.2	36
35	A generic Transcriptomics Reporting Framework (TRF) for â€~omics data processing and analysis. Regulatory Toxicology and Pharmacology, 2017, 91, S36-S45.	1.3	35
36	Application of the adverse outcome pathway framework to genotoxic modes of action. Environmental and Molecular Mutagenesis, 2020, 61, 114-134.	0.9	35

#	Article	IF	CITATIONS
37	Using a gene expression biomarker to identify DNA damageâ€inducing agents in microarray profiles. Environmental and Molecular Mutagenesis, 2018, 59, 772-784.	0.9	34
38	Toxicogenomic outcomes predictive of forestomach carcinogenesis following exposure to benzo(a)pyrene: Relevance to human cancer risk. Toxicology and Applied Pharmacology, 2013, 273, 269-280.	1.3	33
39	Development of the adverse outcome pathway "alkylation of <scp>DNA</scp> in male premeiotic germ cells leading to heritable mutations―using the <scp>OECD</scp> 's users' handbook supplement. Environmental and Molecular Mutagenesis, 2015, 56, 724-750.	0.9	33
40	Tandem repeat mutation, global DNA methylation, and regulation of DNA methyltransferases in cultured mouse embryonic fibroblast cells chronically exposed to chemicals with different modes of action. Environmental and Molecular Mutagenesis, 2008, 49, 26-35.	0.9	32
41	Characterizing Benzo[a]pyrene-induced lacZ mutation spectrum in transgenic mice using next-generation sequencing. BMC Genomics, 2015, 16, 812.	1.2	32
42	Framework for the quality assurance of 'omics technologies considering GLP requirements. Regulatory Toxicology and Pharmacology, 2017, 91, S27-S35.	1.3	32
43	Mining the Archives: A Cross-Platform Analysis of Gene Expression Profiles in Archival Formalin-Fixed Paraffin-Embedded Tissues. Toxicological Sciences, 2015, 148, 460-472.	1.4	31
44	Assessment of the performance of the TGxâ€DDI biomarker to detect DNA damageâ€inducing agents using quantitative RTâ€PCR in TK6 cells. Environmental and Molecular Mutagenesis, 2019, 60, 122-133.	0.9	31
45	Time-Dependent Subcellular Distribution and Effects of Carbon Nanotubes in Lungs of Mice. PLoS ONE, 2015, 10, e0116481.	1.1	27
46	Potency Ranking of Per- and Polyfluoroalkyl Substances Using High-Throughput Transcriptomic Analysis of Human Liver Spheroids. Toxicological Sciences, 2021, 184, 154-169.	1.4	26
47	<i>In Utero</i> Exposure to Benzo[<i>a</i>]Pyrene Increases Mutation Burden in the Soma and Sperm of Adult Mice. Environmental Health Perspectives, 2017, 125, 82-88.	2.8	25
48	Paternal exposure to benzo(a)pyrene induces genome-wide mutations in mouse offspring. Communications Biology, 2019, 2, 228.	2.0	25
49	Hepatic transcriptional dose-response analysis of male and female Fischer rats exposed to hexabromocyclododecane. Food and Chemical Toxicology, 2019, 133, 110262.	1.8	25
50	Methoxyacetic Acid-Induced Spermatocyte Death Is Associated with Histone Hyperacetylation in Rats1. Biology of Reproduction, 2008, 78, 822-831.	1.2	24
51	Identifying germ cell mutagens using OECD test guideline 488 (transgenic rodent somatic and germ) Tj ETQq1 Toxicology and Environmental Mutagenesis, 2018, 832-833, 7-18.	1 0.78431 0.9	4 rgBT /Over 24
52	Hexabromocyclododecane (HBCD): A case study applying tiered testing for human health risk assessment. Food and Chemical Toxicology, 2019, 131, 110581.	1.8	24
53	Thyroid Hormone Response Element Half-Site Organization and Its Effect on Thyroid Hormone Mediated Transcription. PLoS ONE, 2014, 9, e101155.	1.1	24
54	Identification of Gene Transcription Start Sites and Enhancers Responding to Pulmonary Carbon Nanotube Exposure <i>in Vivo</i> . ACS Nano, 2017, 11, 3597-3613.	7.3	23

#	Article	IF	CITATIONS
55	BMDExpress Data Viewer ―a visualization tool to analyze BMDExpress datasets. Journal of Applied Toxicology, 2016, 36, 1048-1059.	1.4	22
56	Is there a role for the adverse outcome pathway framework to support radiation protection?. International Journal of Radiation Biology, 2019, 95, 225-232.	1.0	22
57	A cross-sector call to improve carcinogenicity risk assessment through use of genomic methodologies. Regulatory Toxicology and Pharmacology, 2020, 110, 104526.	1.3	21
58	A case example of a radiation-relevant adverse outcome pathway to lung cancer. International Journal of Radiation Biology, 2021, 97, 68-84.	1.0	20
59	Hepatic genotoxicity and toxicogenomic responses in Mutaâ,,¢Mouse males treated with dibenz[a,h]anthracene. Mutagenesis, 2013, 28, 543-554.	1.0	19
60	Benzo(a)pyrene Is Mutagenic in Mouse Spermatogonial Stem Cells and Dividing Spermatogonia. Toxicological Sciences, 2016, 152, 363-371.	1.4	19
61	The development of adverse outcome pathways for mutagenic effects for the organization for economic coâ€operation and development. Environmental and Molecular Mutagenesis, 2013, 54, 79-81.	0.9	17
62	Integration of the TGx-28.65 genomic biomarker with the flow cytometry micronucleus test to assess the genotoxicity of disperse orange and 1,2,4-benzenetriol in human TK6 cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2017, 806, 51-62.	0.4	17
63	A Modern Genotoxicity Testing Paradigm: Integration of the High-Throughput CometChip® and the TGx-DDI Transcriptomic Biomarker in Human HepaRGâ"¢ Cell Cultures. Frontiers in Public Health, 2021, 9, 694834.	1.3	17
64	Transcriptional profiling of male F344 rats suggests the involvement of calcium signaling in the mode of action of acrylamide-induced thyroid cancer. Food and Chemical Toxicology, 2017, 107, 186-200.	1.8	16
65	Transcriptional profiling of male CD-1 mouse lungs and Harderian glands supports the involvement of calcium signaling in acrylamide-induced tumors. Regulatory Toxicology and Pharmacology, 2018, 95, 75-90.	1.3	16
66	Simulation of mouse and rat spermatogenesis to inform genotoxicity testing using OECD test guideline 488. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 832-833, 19-28.	0.9	16
67	Chemically induced mutations in a MutaMouse reporter gene inform mechanisms underlying human cancer mutational signatures. Communications Biology, 2020, 3, 438.	2.0	16
68	Flow cytometric micronucleus assay and TGx-DDI transcriptomic biomarker analysis of ten genotoxic and non-genotoxic chemicals in human HepaRGâ,,¢ cells. Genes and Environment, 2020, 42, 5.	0.9	16
69	R-ODAF: Omics data analysis framework for regulatory application. Regulatory Toxicology and Pharmacology, 2022, 131, 105143.	1.3	16
70	Transgenic Rodent Assay for Quantifying Male Germ Cell Mutant Frequency. Journal of Visualized Experiments, 2014, , e51576.	0.2	15
71	Transcriptional profiling of the mouse hippocampus supports an NMDARâ€mediated neurotoxic mode of action for benzo[<i>a</i>]pyrene. Environmental and Molecular Mutagenesis, 2016, 57, 350-363.	0.9	15
72	TGx-DDI, a Transcriptomic Biomarker for Genotoxicity Hazard Assessment of Pharmaceuticals and Environmental Chemicals. Frontiers in Big Data, 2019, 2, 36.	1.8	15

#	Article	IF	CITATIONS
73	Bringing together scientific disciplines for collaborative undertakings: a vision for advancing the adverse outcome pathway framework. International Journal of Radiation Biology, 2021, 97, 431-441.	1.0	15
74	Comprehensive interpretation of in vitro micronucleus test results for 292 chemicals: from hazard identification to risk assessment application. Archives of Toxicology, 2022, 96, 2067-2085.	1.9	15
75	Transcriptional Profiling of Dibenzo[<i>def,p</i>]chrysene-induced Spleen Atrophy Provides Mechanistic Insights into its Immunotoxicity in MutaMouse. Toxicological Sciences, 2016, 149, 251-268.	1.4	14
76	<scp>AOP</scp> report: Development of an adverse outcome pathway for oxidative <scp>DNA</scp> damage leading to mutations and chromosomal aberrations. Environmental and Molecular Mutagenesis, 2022, 63, 118-134.	0.9	14
77	A Return to the Origin of the EMGS: Rejuvenating the Quest for Human Germ Cell Mutagens and Determining the Risk to Future Generations. Environmental and Molecular Mutagenesis, 2020, 61, 42-54.	0.9	13
78	The application of transcriptional benchmark dose modeling for deriving thresholds of effects associated with solarâ€simulated ultraviolet radiation exposure. Environmental and Molecular Mutagenesis, 2018, 59, 502-515.	0.9	10
79	Integration of sperm DNA damage assessment into OECD test guidelines for genotoxicity testing using the MutaMouse model. Toxicology and Applied Pharmacology, 2018, 357, 10-18.	1.3	9
80	Unveiling Integrated Functional Pathways Leading to Enhanced Respiratory Disease Associated With Inactivated Respiratory Syncytial Viral Vaccine. Frontiers in Immunology, 2019, 10, 597.	2.2	9
81	Toxicogenomic applications in risk assessment at Health Canada. Current Opinion in Toxicology, 2019, 18, 34-45.	2.6	9
82	Development and validation of the TGx-HDACi transcriptomic biomarker to detect histone deacetylase inhibitors in human TK6 cells. Archives of Toxicology, 2021, 95, 1631-1645.	1.9	9
83	Heritable hazards of smoking: Applying the "clean sheet―framework to further science and policy. Environmental and Molecular Mutagenesis, 2020, 61, 910-921.	0.9	8
84	The 28 + 28Âday design is an effective sampling time for analyzing mutant frequencies in rapidly proliferating tissues of MutaMouse animals. Archives of Toxicology, 2021, 95, 1103-1116.	1.9	8
85	Integrated In Vivo Genotoxicity Assessment of Procarbazine Hydrochloride Demonstrates Induction of Pigâ€a and LacZ Mutations, and Micronuclei, in MutaMouse Hematopoietic Cells. Environmental and Molecular Mutagenesis, 2019, 60, 505-512.	0.9	7
86	TranscriptomicÂpathwayÂandÂbenchmark dose analysis of Bisphenol A, Bisphenol S, Bisphenol F, and 3,3',5,5'-Tetrabromobisphenol A in H9 human embryonic stem cells. Toxicology in Vitro, 2021, 72, 105097.	1.1	7
87	A Collaborative Initiative to Establish Genomic Biomarkers for Assessing Tumorigenic Potential to Reduce Reliance on Conventional Rodent Carcinogenicity Studies. Toxicological Sciences, 2022, 188, 4-16.	1.4	7
88	A lacZ transgenic mouse assay for the detection of mutations in follicular granulosa cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 578, 117-123.	0.4	6
89	Identification of p53 Activators in a Human Microarray Compendium. Chemical Research in Toxicology, 2019, 32, 1748-1759.	1.7	6
90	High information content assays for genetic toxicology testing: A report of the International Workshops on Genotoxicity Testing (IWGT). Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 847, 403022.	0.9	5

#	Article	IF	CITATIONS
91	Whole Genome Sequencing of the Mutamouse Model Reveals Strain- and Colony-Level Variation, and Genomic Features of the Transgene Integration Site. Scientific Reports, 2019, 9, 13775.	1.6	4
92	Meta-analysis of transcriptomic datasets using benchmark dose modeling shows value in supporting radiation risk assessment. International Journal of Radiation Biology, 2021, 97, 31-49.	1.0	3
93	Brief Developmental Exposure to Fluoxetine Causes Life-Long Alteration of the Brain Transcriptome in Zebrafish. Frontiers in Endocrinology, 2022, 13, 847322.	1.5	2
94	A Case Study on Integrating a New Key Event Into an Existing Adverse Outcome Pathway on Oxidative DNA Damage: Challenges and Approaches in a Data-Rich Area. Frontiers in Toxicology, 2022, 4, 827328.	1.6	2
95	Integrated in silico and in vitro genotoxicity assessment of thirteen data-poor substances. Regulatory Toxicology and Pharmacology, 2019, 107, 104427.	1.3	1
96	Celebrating 50 Years of EMGS: A Visionary Idea Continues. Environmental and Molecular Mutagenesis, 2020, 61, 5-6.	0.9	1
97	Introducing AOP Reports: Collaborative review and publication of adverse outcome pathways. Environmental and Molecular Mutagenesis, 2022, 63, 116-117.	0.9	1
98	A transcriptomic dataset used to derive biomarkers of chemically induced histone deacetylase inhibition (HDACi) in human TK6 cells. Data in Brief, 2021, 36, 107097.	0.5	0
99	A gene expression biomarker identifies inhibitors of two classes of epigenome effectors in a human microarray compendium. Chemico-Biological Interactions, 2022, 365, 110032.	1.7	0