
Esther L Sabban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5614212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alterations in Microbiotaâ€Gutâ€Brain Axis and Susceptibility or Resilience to Traumatic Stress. FASEB Journal, 2022, 36, .	0.2	1
2	Resilience or susceptibility to traumatic stress: Potential influence of the microbiome. Neurobiology of Stress, 2022, 19, 100461.	1.9	16
3	Systematic Review and Methodological Considerations for the Use of Single Prolonged Stress and Fear Extinction Retention in Rodents. Frontiers in Behavioral Neuroscience, 2021, 15, 652636.	1.0	17
4	Variable Response of Norepinephrine Transporter to Traumatic Stress and Relationship to Hyperarousal. Frontiers in Behavioral Neuroscience, 2021, 15, 725091.	1.0	3
5	Intranasal Neuropeptide Y as a Potential Therapeutic for Depressive Behavior in the Rodent Single Prolonged Stress Model in Females. Frontiers in Behavioral Neuroscience, 2021, 15, 705579.	1.0	14
6	Activation of NPY receptor subtype 1 by [D-His26]NPY is sufficient to prevent development of anxiety and depressive like effects in the single prolonged stress rodent model of PTSD. Neuropeptides, 2020, 80, 102001.	0.9	20
7	Sex Differences in the Neuropeptide Y System and Implications for Stress Related Disorders. Biomolecules, 2020, 10, 1248.	1.8	32
8	Effect of intranasal administration of neuropeptide Y and single prolonged stress on food consumption and body weight in male rats. Neuropeptides, 2020, 82, 102060.	0.9	6
9	Preclinical findings on the potential of intranasal neuropeptide Y for treating hyperarousal features of PTSD. Annals of the New York Academy of Sciences, 2019, 1455, 149-159.	1.8	13
10	Single prolonged stress PTSD model triggers progressive severity of anxiety, altered gene expression in locus coeruleus and hypothalamus and effected sensitivity to NPY. European Neuropsychopharmacology, 2019, 29, 482-492.	0.3	33
11	Single Prolonged Stress as a Prospective Model for Posttraumatic Stress Disorder in Females. Frontiers in Behavioral Neuroscience, 2019, 13, 17.	1.0	18
12	Single Prolonged Stress as a Prospective Model for Posttraumatic Stress Disorder in Females. FASEB Journal, 2019, 33, 581.2.	0.2	0
13	Potential of Intranasal Neuropeptide Y (NPY) and/or Melanocortin 4 Receptor (MC4R) Antagonists for Preventing or Treating PTSD. Military Medicine, 2018, 183, 408-412.	0.4	31
14	Glucocorticoid withdrawal affects stressâ€induced changes in urocortin 2 gene expression in the rat adrenal medulla and brain. Journal of Neuroendocrinology, 2018, 30, e12595.	1.2	3
15	Changes in Gene Expression in the Locus Coeruleus-Amygdala Circuitry in Inhibitory Avoidance PTSD Model. Cellular and Molecular Neurobiology, 2018, 38, 273-280.	1.7	21
16	Cardiovascular responses to intranasal neuropeptide Y in single prolonged stress rodent model of post-traumatic stress disorder. Neuropeptides, 2018, 67, 87-94.	0.9	7
17	The effects of enhancing endocannabinoid signaling and blocking corticotrophin releasing factor receptor in the amygdala and hippocampus on the consolidation of a stressful event. European Neuropsychopharmacology, 2017, 27, 913-927.	0.3	24
18	NPY1 Receptor Agonist Modulates Development of Depressive-Like Behavior and Gene Expression in Hypothalamus in SPS Rodent PTSD Model. Frontiers in Neuroscience, 2017, 11, 203.	1.4	19

ESTHER L SABBAN

#	Article	IF	CITATIONS
19	Effects of Intranasal NPY on Cardiovascular Parameters and Activity in SPS Model of PTSD: Telemetric Studies. FASEB Journal, 2017, 31, .	0.2	0
20	Potential of neuropeptide Y for preventing or treating post-traumatic stress disorder. Neuropeptides, 2016, 56, 19-24.	0.9	69
21	Locus coeruleus response to singleâ€prolonged stress and early intervention with intranasal neuropeptide Y. Journal of Neurochemistry, 2015, 135, 975-986.	2.1	43
22	Comparative effects of intranasal neuropeptide Y and HS014 in preventing anxiety and depressive-like behavior elicited by single prolonged stress. Behavioural Brain Research, 2015, 295, 9-16.	1.2	45
23	Regulation of nonclassical renin-angiotensin system receptor gene expression in the adrenal medulla by acute and repeated immobilization stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 308, R517-R529.	0.9	8
24	Targeting the neuropeptide Y system in stress-related psychiatric disorders. Neurobiology of Stress, 2015, 1, 33-43.	1.9	127
25	Intranasal NPY Attenuates Development of Single Prolonged Stress (SPS) Triggered Impairments in Corticotropinâ€releasing Hormone (CRH) Mediated Pathways. FASEB Journal, 2015, 29, 685.18.	0.2	Ο
26	Effects of Intranasal Neuropeptide Y and HS014 in Preventing Anxiety and Depressiveâ€like Behavior Elicited by Single Prolonged Stress Animal Model of PTSD: Comparative Study. FASEB Journal, 2015, 29, 931.10.	0.2	0
27	A systems approach identifies co-signaling molecules of early growth response 1 transcription factor in immobilization stress. BMC Systems Biology, 2014, 8, 100.	3.0	6
28	Early Intervention With Intranasal NPY Prevents Single Prolonged Stress-Triggered Impairments in Hypothalamus and Ventral Hippocampus in Male Rats. Endocrinology, 2014, 155, 3920-3933.	1.4	63
29	Stressâ€induced changes in gene expression of urocortin 2 and other <scp>CRH</scp> peptides in rat adrenal medulla: involvement of glucocorticoids. Journal of Neurochemistry, 2013, 125, 185-192.	2.1	16
30	Stressâ€ŧriggered regulation of the adrenomedullary angiotensin II type 2 receptor. FASEB Journal, 2013, 27, 936.8.	0.2	0
31	Neuropeptide Y (NPY) infusion attenuates development of PTSDâ€like symptoms to traumatic stress in rats. FASEB Journal, 2013, 27, 1100.10.	0.2	0
32	Divergent effects of estradiol on gene expression of catecholamine biosynthetic enzymes. Physiology and Behavior, 2010, 99, 163-168.	1.0	36
33	Kinetics and Persistence of Cardiovascular and Locomotor Effects of Immobilization Stress and Influence of ACTH Treatment. Neuroendocrinology, 2009, 89, 98-108.	1.2	10
34	Analysis of Signalling Pathways Triggering Transcriptional Changes in Adrenal Medulla with Single and Repeated Stress. FASEB Journal, 2009, 23, 626.5.	0.2	0
35	Mechanisms for Differential Effects of Estrogen on Tyrosine Hydroxylase (TH) Gene Transcription. FASEB Journal, 2009, 23, 941.14.	0.2	0
36	Interaction between Nicotine and Estradiol in Regulation of Gene Expression in Substantia Nigra (SN) in Animal Model of Parkinson's Disease (PD). FASEB Journal, 2009, 23, 963.5.	0.2	0

ESTHER L SABBAN

#	Article	IF	CITATIONS
37	Cold Stress Triggered Alterations in Gene Expression in Rat Adrenal Medulla. FASEB Journal, 2008, 22, 1205.4.	0.2	0
38	Estrogen Dependent Response to Nicotine in Substantia Nigra and Ventral Tegmental Area of OVX female rats. FASEB Journal, 2008, 22, 719.13.	0.2	0
39	Festschrift for Dr Richard Kvetnansky, to celebrate his 70th birthday. Stress, 2007, 10, 107-108.	0.8	0
40	Influence of prior experience with homotypic or heterotypic stressor on stress reactivity in catecholaminergic systems. Stress, 2007, 10, 137-143.	0.8	29
41	Catecholamines in stress: molecular mechanisms of gene expression. Endocrine Regulations, 2007, 41, 61-73.	0.5	24
42	Stress Triggered Changes in Gene Expression in Adrenal Medulla: Transcriptional Responses to Acute and Chronic Stress. Cellular and Molecular Neurobiology, 2006, 26, 843-854.	1.7	30
43	Molecular Regulation of Gene Expression of Catecholamine Biosynthetic Enzymes by Stress: Sympathetic Ganglia versus Adrenal Medulla. Annals of the New York Academy of Sciences, 2004, 1018, 370-377.	1.8	37
44	Differential Effects of Stress on Gene Transcription Factors in Catecholaminergic Systems. Annals of the New York Academy of Sciences, 2004, 1032, 130-140.	1.8	34
45	Mutagenesis of Rat Dopamine β-Hydroxylase: Examination in Cell-Free System. Journal of Neurochemistry, 2002, 64, 25-33.	2.1	1
46	Induction of Adrenal Tyrosine Hydroxylase mRNA by Single Immobilization Stress Occurs Even After Splanchnic Transection and in the Presence of Cholinergic Antagonists. Journal of Neurochemistry, 2002, 66, 138-146.	2.1	30
47	Sp1/Egr1 Motif. Journal of Neurochemistry, 2002, 73, 433-436.	2.1	34
48	Effects of Short―and Longâ€Term Nicotine Treatment on Intracellular Calcium and Tyrosine Hydroxylase Gene Expression. Annals of the New York Academy of Sciences, 2002, 971, 39-44.	1.8	9
49	Stress and Molecular Biology of Neurotransmitter-Related Enzymesa. Annals of the New York Academy of Sciences, 1998, 851, 342-356.	1.8	43
50	Tyrosine hydroxylase mRNA levels in locus ceruleus of rats during adaptation to long-term immobilization stress exposure. Molecular and Chemical Neuropathology, 1998, 33, 249-258.	1.0	36
51	Selective in Vivo Stimulation of Stress-Activated Protein Kinase in Different Rat Tissues by Immobilization Stress. Stress, 1998, 2, 289-298.	0.8	25
52	câ€Fos Deficiency Inhibits Induction of mRNA for Some, but Not All, Neurotransmitter Biosynthetic Enzymes by Immobilization Stress. Journal of Neurochemistry, 1998, 70, 1935-1940.	2.1	14
53	Immobilization Stress Elevates GTP Cyclohydrolase I mRNA Levels in Rat Adrenals Predominantly by Hormonally Mediated Mechanisms. Stress, 1997, 1, 135-144.	0.8	12
54	Increase in Rat Adrenal Phenylethanolamine <i>N</i> â€Methyltransferase mRNA Level Caused by Immobilization Stress Depends on Intact Pituitary ―Adrenocortical Axis. Journal of Neurochemistry, 1994, 63, 808-814.	2.1	57

ESTHER L SABBAN

#	Article	IF	Citations
55	Repeated Immobilization Stress Increases the Binding of câ€Fosâ€Like Proteins to a Rat Dopamine βâ€Hydroxylase Promoter Enhancer Sequence. Journal of Neurochemistry, 1993, 61, 776-779.	2.1	41
56	Regulation of Tyrosine Hydroxylase and Dopamine ?-Hydroxylase mRNA Levels in Rat Adrenals by a Single and Repeated Immobilization Stress. Journal of Neurochemistry, 1992, 58, 2124-2130.	2.1	92
57	Regulation of Expression of Dopamine βâ€Hydroxylase in PC12 Cells by Glucocorticoids and Cyclic AMP Analogues. Journal of Neurochemistry, 1992, 59, 2040-2047.	2.1	87
58	Regulation of Carboxypeptidase E by Membrane Depolarization in PC12 Pheochromocytoma Cells: Comparison with mRNAs Encoding Other Peptide―and Catecholamineâ€Biosynthetic Enzymes. Journal of Neurochemistry, 1992, 59, 2263-2270.	2.1	17
59	Rat dopamine ?-hydroxylase: Molecular cloning and characterization of the cDNA and regulation of the mRNA by reserpine. Journal of Neuroscience Research, 1990, 25, 395-404.	1.3	84
60	Subcellular Site of Biosynthesis of the Catecholamine Biosynthetic Enzymes in Bovine Adrenal Medulla. Journal of Neurochemistry, 1984, 43, 1663-1668.	2.1	18
61	Catecholamines and Stress. , 0, , 19-35.		2