
Binbin Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/561419/publications.pdf Version: 2024-02-01

RINRIN CHANC

#	Article	IF	CITATIONS
1	Novel C3N4–CdS composite photocatalysts with organic–inorganic heterojunctions: in situ synthesis, exceptional activity, high stability and photocatalytic mechanism. Journal of Materials Chemistry A, 2013, 1, 3083.	10.3	471
2	BiOBr–carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. Journal of Materials Chemistry, 2012, 22, 21159.	6.7	365
3	Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews, 2019, 119, 11631-11717.	47.7	207
4	Graphitized hierarchical porous carbon nanospheres: simultaneous activation/graphitization and superior supercapacitance performance. Journal of Materials Chemistry A, 2015, 3, 9565-9577.	10.3	183
5	Chemical blowing strategy synthesis of nitrogen-rich porous graphitized carbon nanosheets: Morphology, pore structure and supercapacitor application. Chemical Engineering Journal, 2017, 312, 191-203.	12.7	110
6	Convenient synthesis of porous carbon nanospheres with tunable pore structure and excellent adsorption capacity. Journal of Hazardous Materials, 2013, 262, 256-264.	12.4	108
7	Poplar catkin-derived self-templated synthesis of N-doped hierarchical porous carbon microtubes for effective CO2 capture. Chemical Engineering Journal, 2019, 358, 1507-1518.	12.7	103
8	Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors. Journal of Solid State Electrochemistry, 2015, 19, 1783-1791.	2.5	96
9	Graphitic carbon nitride–BiVO ₄ heterojunctions: simple hydrothermal synthesis and high photocatalytic performances. RSC Advances, 2014, 4, 4187-4193.	3.6	92
10	N-rich porous carbons with a high graphitization degree and multiscale pore network for boosting high-rate supercapacitor with ultrafast charging. Chemical Engineering Journal, 2018, 350, 585-598.	12.7	92
11	A Z-scheme photocatalyst for enhanced photocatalytic H2 evolution, constructed by growth of 2D plasmonic MoO3-x nanoplates onto 2D g-C3N4 nanosheets. Journal of Colloid and Interface Science, 2020, 567, 213-223.	9.4	77
12	ZnCl ₂ -activated porous carbon spheres with high surface area and superior mesoporous structure as an efficient supercapacitor electrode. RSC Advances, 2014, 4, 40546-40552.	3.6	62
13	Crab shell-derived honeycomb-like graphitized hierarchically porous carbons for satisfactory rate performance of all-solid-state supercapacitors. Sustainable Energy and Fuels, 2019, 3, 1201-1214.	4.9	49
14	Engineering a surface defect-rich Ti ₃ C ₂ quantum dots/mesoporous C ₃ N ₄ hollow nanosphere Schottky junction for efficient N ₂ photofixation. Journal of Materials Chemistry A, 2022, 10, 3134-3145.	10.3	41
15	Convenient and large-scale synthesis of nitrogen-rich hierarchical porous carbon spheres for supercapacitors and CO 2 capture. Applied Surface Science, 2017, 412, 606-615.	6.1	40
16	Soft-template synthesis of sulfonated mesoporous carbon with high catalytic activity for biodiesel production. RSC Advances, 2013, 3, 1987-1994.	3.6	36
17	Magnetically separable porous carbon nanospheres as solid acid catalysts. RSC Advances, 2013, 3, 20999.	3.6	31
18	Plasmon-enabled N ₂ photofixation on partially reduced Ti ₃ C ₂ MXene. Chemical Science, 2021, 12, 11213-11224.	7.4	27

BINBIN CHANG

#	Article	IF	CITATIONS
19	2D graphene-like hierarchically porous carbon nanosheets from a nano-MgO template and ZnCl ₂ activation: morphology, porosity and supercapacitance performance. RSC Advances, 2016, 6, 71360-71369.	3.6	24
20	Cost-Efficient Strategy for Sustainable Cross-Linked Microporous Carbon Bead with Satisfactory CO2 Capture Capacity. ACS Omega, 2018, 3, 5563-5573.	3.5	23
21	Biowaste-derived 3D honeycomb-like N and S dual-doped hierarchically porous carbons for high-efficient CO ₂ capture. RSC Advances, 2019, 9, 23241-23253.	3.6	22
22	In situ self-activation synthesis of binary-heteroatom co-doped 3D coralline-like microporous carbon nanosheets for high-efficiency energy storage in flexible all-solid-state symmetrical supercapacitors. Sustainable Energy and Fuels, 2020, 4, 2527-2540.	4.9	20
23	Hollow porous carbon sphere prepared by a facile activation method and its rapid phenol removal. Materials Letters, 2014, 126, 13-16.	2.6	19
24	Copper ions-assisted inorganic dynamic porogen of graphene-like multiscale microporous carbon nanosheets for effective carbon dioxide capture. Journal of Colloid and Interface Science, 2021, 600, 670-680.	9.4	13
25	A sustainable one-step strategy for highly graphitized capacitive carbons with hierarchical micro–meso–macro porosity. Nanoscale Advances, 2022, 4, 1394-1407.	4.6	13
26	SO3H-functionalized mesoporous carbon/silica composite with a spherical morphology and its excellent catalytic performance for biodiesel production. Journal of Porous Materials, 2013, 20, 1423-1431.	2.6	5
27	Growth of narrow-bandgap Cl-doped carbon nitride nanofibers on carbon nitride nanosheets for high-efficiency photocatalytic H ₂ O ₂ generation. RSC Advances, 2021, 11, 31385-31394.	3.6	4