
## Neal Fann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5613978/publications.pdf Version: 2024-02-01



Νεαι Γανιν

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9592-9597.                   | 3.3 | 1,407     |
| 2  | Estimating the National Public Health Burden Associated with Exposure to Ambient PM <sub>2.5</sub> and Ozone. Risk Analysis, 2012, 32, 81-95.                                                                                    | 1.5 | 472       |
| 3  | Estimates of the Global Burden of Ambient PM2.5, Ozone, and NO2 on Asthma Incidence and Emergency<br>Room Visits. Environmental Health Perspectives, 2018, 126, 107004.                                                          | 2.8 | 209       |
| 4  | The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012. Science of the Total Environment, 2018, 610-611, 802-809.                                                                                | 3.9 | 184       |
| 5  | The influence of location, source, and emission type in estimates of the human health benefits of reducing a ton of air pollution. Air Quality, Atmosphere and Health, 2009, 2, 169-176.                                         | 1.5 | 139       |
| 6  | The Recent and Future Health Burden of Air Pollution Apportioned Across U.S. Sectors.<br>Environmental Science & Technology, 2013, 47, 3580-3589.                                                                                | 4.6 | 124       |
| 7  | The Environmental Benefits Mapping and Analysis Program–ÂCommunity Edition (BenMAP–CE): A tool to estimate the health and economic benefits of reducing air pollution. Environmental Modelling and Software, 2018, 104, 118-129. | 1.9 | 122       |
| 8  | Characterizing the PM2.5-related health benefits of emission reductions for 17 industrial, area and mobile emission sectors across the U.S Environment International, 2012, 49, 141-151.                                         | 4.8 | 113       |
| 9  | A class of non-linear exposure-response models suitable for health impact assessment applicable to<br>large cohort studies of ambient air pollution. Air Quality, Atmosphere and Health, 2016, 9, 961-972.                       | 1.5 | 106       |
| 10 | Health Benefits from Large-Scale Ozone Reduction in the United States. Environmental Health Perspectives, 2012, 120, 1404-1410.                                                                                                  | 2.8 | 99        |
| 11 | The geographic distribution and economic value of climate change-related ozone health impacts in the<br>United States in 2030. Journal of the Air and Waste Management Association, 2015, 65, 570-580.                           | 0.9 | 85        |
| 12 | The health benefits of reducing air pollution in Sydney, Australia. Environmental Research, 2015, 143, 19-25.                                                                                                                    | 3.7 | 85        |
| 13 | Effect modification of ozone-related mortality risks by temperature in 97 US cities. Environment<br>International, 2014, 73, 128-134.                                                                                            | 4.8 | 81        |
| 14 | Maximizing Health Benefits and Minimizing Inequality: Incorporating Local cale Data in the Design and<br>Evaluation of Air Quality Policies. Risk Analysis, 2011, 31, 908-922.                                                   | 1.5 | 80        |
| 15 | The public health context for PM2.5 and ozone air quality trends. Air Quality, Atmosphere and Health, 2013, 6, 1-11.                                                                                                             | 1.5 | 69        |
| 16 | Methodological considerations in developing local-scale health impact assessments: balancing national, regional, and local data. Air Quality, Atmosphere and Health, 2009, 2, 99-110.                                            | 1.5 | 68        |
| 17 | Climate Change-Related Temperature Impacts on Warm Season Heat Mortality: A Proof-of-Concept<br>Methodology Using BenMAP. Environmental Science & Technology, 2011, 45, 1450-1457.                                               | 4.6 | 67        |
| 18 | Survey of Ambient Air Pollution Health Risk Assessment Tools. Risk Analysis, 2016, 36, 1718-1736.                                                                                                                                | 1.5 | 66        |

Neal Fann

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Estimated Changes in Life Expectancy and Adult Mortality Resulting from Declining PM2.5 Exposures in the Contiguous United States: 1980–2010. Environmental Health Perspectives, 2017, 125, 097003.                                                                    | 2.8 | 65        |
| 20 | Effects of Increasing Aridity on Ambient Dust and Public Health in the U.S. Southwest Under Climate Change. GeoHealth, 2019, 3, 127-144.                                                                                                                               | 1.9 | 56        |
| 21 | The estimated change in the level and distribution of PM2.5-attributable health impacts in the United States: 2005–2014. Environmental Research, 2018, 167, 506-514.                                                                                                   | 3.7 | 53        |
| 22 | A multi–pollutant, risk–based approach to air quality management: Case study for Detroit.<br>Atmospheric Pollution Research, 2010, 1, 296-304.                                                                                                                         | 1.8 | 52        |
| 23 | Improving the Linkages between Air Pollution Epidemiology and Quantitative Risk Assessment.<br>Environmental Health Perspectives, 2011, 119, 1671-1675.                                                                                                                | 2.8 | 47        |
| 24 | Impacts of oak pollen on allergic asthma in the United States and potential influence of future climate change. GeoHealth, 2017, 1, 80-92.                                                                                                                             | 1.9 | 42        |
| 25 | The Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP-CE): A tool to<br>estimate the health and economic benefits of reducing air pollution. Environmental Modelling and<br>Software, 2018, 104, 118-129.                                | 1.9 | 39        |
| 26 | Outdoor Fine Particles and Nonfatal Strokes. Epidemiology, 2014, 25, 835-842.                                                                                                                                                                                          | 1.2 | 35        |
| 27 | Quantifying the Public Health Benefits of Reducing Air Pollution: Critically Assessing the Features<br>and Capabilities of WHO's AirQ+ and U.S. EPA's Environmental Benefits Mapping and Analysis<br>Program—Community Edition (BenMAP—CE). Atmosphere, 2020, 11, 516. | 1.0 | 35        |
| 28 | Estimates of Present and Future Asthma Emergency Department Visits Associated With Exposure to Oak, Birch, and Grass Pollen in the United States. GeoHealth, 2019, 3, 11-27.                                                                                           | 1.9 | 33        |
| 29 | Assessing Human Health PM <sub>2.5</sub> and Ozone Impacts from U.S. Oil and Natural Gas Sector Emissions in 2025. Environmental Science & Technology, 2018, 52, 8095-8103.                                                                                            | 4.6 | 32        |
| 30 | Heat-Related Health Impacts under Scenarios of Climate and Population Change. International Journal of Environmental Research and Public Health, 2018, 15, 2438.                                                                                                       | 1.2 | 22        |
| 31 | Health benefits and control costs of tightening particulate matter emissions standards for coal power plants - The case of Northeast Brazil. Environment International, 2019, 124, 420-430.                                                                            | 4.8 | 20        |
| 32 | Monetized health benefits attributable to mobile source emission reductions across the United States in 2025. Science of the Total Environment, 2019, 650, 2490-2498.                                                                                                  | 3.9 | 18        |
| 33 | Characterizing the Longâ€Term PM <sub>2.5</sub> Concentrationâ€Response Function: Comparing the<br>Strengths and Weaknesses of Research Synthesis Approaches. Risk Analysis, 2016, 36, 1693-1707.                                                                      | 1.5 | 17        |
| 34 | A database for evaluating the InMAP, APEEP, and EASIUR reduced complexity air-quality modeling tools.<br>Data in Brief, 2020, 28, 104886.                                                                                                                              | 0.5 | 16        |
| 35 | Characterizing the confluence of air pollution risks in the United States. Air Quality, Atmosphere and<br>Health, 2016, 9, 293-301.                                                                                                                                    | 1.5 | 13        |
| 36 | Estimating the Health and Economic Impacts of Changes in Local Air Quality. American Journal of<br>Public Health, 2018, 108, S151-S157.                                                                                                                                | 1.5 | 12        |

Neal Fann

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Ozone-related asthma emergency department visits in the US in a warming climate. Environmental<br>Research, 2020, 183, 109206.                                                                          | 3.7 | 12        |
| 38 | The recent and future health burden of the U.S. mobile sector apportioned by source. Environmental Research Letters, 2020, 15, 075009.                                                                  | 2.2 | 12        |
| 39 | Estimating Lifetime Cost of Illness. An Application to Asthma. Annals of the American Thoracic Society, 2020, 17, 1558-1569.                                                                            | 1.5 | 12        |
| 40 | Change in fine particle-related premature deaths among US population subgroups between 1980 and 2010. Air Quality, Atmosphere and Health, 2019, 12, 673-682.                                            | 1.5 | 9         |
| 41 | CABOT-O <sub>3</sub> : An Optimization Model for Air Quality Benefit-Cost and Distributional Impacts<br>Analysis. Environmental Science & Technology, 2020, 54, 13370-13378.                            | 4.6 | 5         |
| 42 | Meeting Report: Estimating the Benefits of Reducing Hazardous Air Pollutants—Summary of 2009<br>Workshop and Future Considerations. Environmental Health Perspectives, 2011, 119, 125-130.              | 2.8 | 4         |
| 43 | Modeling future asthma attributable to fine particulate matter (PM2.5) in a changing climate: a health impact assessment. Air Quality, Atmosphere and Health, 2022, 15, 311-319.                        | 1.5 | 4         |
| 44 | The Role of Temperature in Modifying the Risk of Ozone-Attributable Mortality under Future Changes<br>in Climate: A Proof-of-Concept Analysis. Environmental Science & Technology, 2022, 56, 1202-1210. | 4.6 | 4         |
| 45 | <i>Response</i> . Risk Analysis, 2012, 32, 197-199.                                                                                                                                                     | 1.5 | 3         |
| 46 | Reanalysis of the association between reduction in long-term PM2.5 concentrations and improved life expectancy. Environmental Health, 2021, 20, 102.                                                    | 1.7 | 3         |
| 47 | Response to Cox Letter: "Miscommunicating Risk, Uncertainty, and Causation: Fine Particulate Air<br>Pollution and Mortality Risk as an Example― Risk Analysis, 2012, 32, 768-770.                       | 1.5 | 2         |
| 48 | Letter in Response to Fraas & Lutter Article: "Uncertain Benefits Estimates for Reductions in Fine<br>Particle Concentrations― Risk Analysis, 2013, 33, 755-756.                                        | 1.5 | 2         |
| 49 | Dynamic Versus Static Modeling of Mortality-Related Benefits of PM <sub>2.5</sub> Reductions in the USA and Chile: 1990 to 2050. Journal of Benefit-Cost Analysis, 2022, 13, 198-223.                   | 0.6 | 2         |
| 50 | Using Science to Shape Policy. Molecular and Integrative Toxicology, 2015, , 403-436.                                                                                                                   | 0.5 | 0         |