
Wolf von Klitzing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/561337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space. EPJ Quantum Technology, 2020, 7, .	6.3	190
2	STE-QUEST—test of the universality of free fall using cold atom interferometry. Classical and Quantum Gravity, 2014, 31, 115010.	4.0	159
3	Tunable whispering gallery modes for spectroscopy and CQED experiments. New Journal of Physics, 2001, 3, 14-14.	2.9	101
4	Bose-Einstein Condensation into Nonequilibrium States Studied by Condensate Focusing. Physical Review Letters, 2002, 89, 270404.	7.8	99
5	Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps. Physical Review Letters, 2007, 99, 083001.	7.8	94
6	Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy. Optics Letters, 2001, 26, 166.	3.3	93
7	Roadmap on Atomtronics: State of the art and perspective. AVS Quantum Science, 2021, 3, .	4.9	87
8	Interferometric Determination of thesandd-Wave Scattering Amplitudes inRb87. Physical Review Letters, 2004, 93, 173202.	7.8	81
9	Accelerating and abruptly autofocusing matter waves. Physical Review A, 2013, 87, .	2.5	80
10	SAGE: A proposal for a space atomic gravity explorer. European Physical Journal D, 2019, 73, 1.	1.3	75
11	Matter-wave interferometers using TAAP rings. New Journal of Physics, 2016, 18, 075014.	2.9	65
12	ELGAR—a European Laboratory for Gravitation and Atom-interferometric Research. Classical and Quantum Gravity, 2020, 37, 225017.	4.0	63
13	Hypersonic Bose–Einstein condensates in accelerator rings. Nature, 2019, 570, 205-209.	27.8	60
14	Very low threshold green lasing in microspheres by up-conversion of IR photons. Journal of Optics B: Quantum and Semiclassical Optics, 2000, 2, 204-206.	1.4	55
15	Design of a dual species atom interferometer for space. Experimental Astronomy, 2015, 39, 167-206.	3.7	48
16	BoseÂEinstein condensation in a magnetic double-well potential. Journal of Optics B: Quantum and Semiclassical Optics, 2003, 5, S119-S123.	1.4	36
17	Very low threshold lasing in Er3+ doped ZBLAN microsphere. Electronics Letters, 1999, 35, 1745.	1.0	33
18	Spontaneous Emergence of Angular Momentum Josephson Oscillations in Coupled Annular Bose-Einstein Condensates. Physical Review Letters, 2007, 98, 050401.	7.8	30

WOLF VON KLITZING

#	Article	IF	CITATIONS
19	Cavity-Enhanced Parity-Nonconserving Optical Rotation in Metastable Xe and Hg. Physical Review Letters, 2012, 108, 210801.	7.8	30
20	Focus on modern frontiers of matter wave optics and interferometry. New Journal of Physics, 2012, 14, 125006.	2.9	26
21	Fundamentals of cavity-enhanced polarimetry for parity-nonconserving optical rotation measurements: Application to Xe, Hg, and I. Physical Review A, 2014, 89, .	2.5	25
22	Quantum technologies in space. Experimental Astronomy, 2021, 51, 1677-1694.	3.7	23
23	Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μW. Review of Scientific Instruments, 2010, 81, 113108.	1.3	22
24	Ultra-sensitive atom imaging for matter-wave optics. New Journal of Physics, 2011, 13, 115012.	2.9	22
25	Atomtronic Matter-Wave Lensing. Physical Review Letters, 2021, 126, 170402.	7.8	20
26	Exploring the foundations of the physical universe with space tests of the equivalence principle. Experimental Astronomy, 2021, 51, 1695-1736.	3.7	20
27	Hydrodynamic behavior in expanding thermal clouds of87Rb. Physical Review A, 2003, 68, .	2.5	19
28	Shape oscillations in nondegenerate Bose gases: Transition from the collisionless to the hydrodynamic regime. Physical Review A, 2005, 72, .	2.5	19
29	An ultra-bright atom laser. New Journal of Physics, 2014, 16, 033036.	2.9	17
30	Compact tunable diode laser with diffraction-limited 1 Watt for atom cooling and trapping. , 2004, , .		12
31	Simple precision measurements of optical beam sizes. Applied Optics, 2018, 57, 9863.	1.8	11
32	AEDGE: Atomic experiment for dark matter and gravity exploration in space. Experimental Astronomy, 0, , 1.	3.7	9
33	Microwave spectroscopy of radio-frequency-dressed <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mmultiscripts> <mml:mi>Rb </mml:mi> <mml:mpresc /> <mml:none></mml:none> <mml:mn> 87 </mml:mn> </mml:mpresc </mml:mmultiscripts> . Physical Review A, 2019, 100, .</mml:math 	ripts	7
34	Bi-chromatic adiabatic shells for atom interferometry. New Journal of Physics, 2019, 21, 123039.	2.9	6
35	Atom number calibration in absorption imaging at very small atom numbers. Open Physics, 2012, 10, .	1.7	5
36	Precise and robust optical beam steering for space optical instrumentation. CEAS Space Journal, 2019, 11, 589-595.	2.3	5

WOLF VON KLITZING

#	Article	IF	CITATIONS
37	Fragility of the bosonic Laughlin state. Physical Review A, 2019, 99, .	2.5	5
38	Publisher's Note: Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps [Phys. Rev. Lett.99, 083001 (2007)]. Physical Review Letters, 2007, 99, .	7.8	4
39	A simple and highly reliable laser system with microwave generated repumping light for cold atom experiments. Optics Communications, 2013, 290, 110-114.	2.1	4
40	Stationary states of Bose–Einstein condensed atoms rotating in an asymmetric ring potential. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 145303.	1.5	4
41	Decoherence-free radio-frequency-dressed subspaces. Physical Review A, 2021, 104, .	2.5	3
42	A gradient and offset compensated loffe–Pritchard trap for Bose–Einstein condensation experiments. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 235301.	1.5	2
43	Hydrodynamic clouds and Bose-Einstein condensation. European Physical Journal Special Topics, 2004, 116, 211-217.	0.2	2
44	Towards rotation sensing with a single atomic clock. Proceedings of SPIE, 2016, , .	0.8	1
45	Transition from the mean-field to the bosonic Laughlin state in a rotating Bose-Einstein condensate. Physical Review A, 2019, 100, .	2.5	1
46	Focus on Supersymmetry in Physics. New Journal of Physics, 0, 3, .	2.9	1
47	Optical beam steering on distribution boards and its application for atom quantum experiments in space. , 2019, , .		1
48	Practical issues in the development of saturation spectroscopy at ultra-high resolution. Measurement Science and Technology, 1998, 9, 417-421.	2.6	0
49	BOSE-EINSTEIN CONDENSATES STUDIED WITH A LINEAR ACCELERATOR. , 2005, , .		0
50	Antireflection coated semiconductor laser amplifier for Bose-Einstein condensation experiments. AIP Advances, 2018, 8, 095020.	1.3	0
51	An optical distribution board for atom quantum experiments in space (a numerical analysis). , 2019, , .		Ο