Changhui Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5613132/publications.pdf

Version: 2024-02-01

71102 66911 7,178 153 41 78 citations h-index g-index papers 153 153 153 9616 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A drought-induced pervasive increase in tree mortality across Canada's boreal forests. Nature Climate Change, 2011, 1, 467-471.	18.8	653
2	High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4910-4915.	7.1	403
3	A modelâ€data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2012, 117, .	3.3	274
4	Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environmental Reviews, 2011, 19, 418-428.	4.5	252
5	A modelâ€data intercomparison of CO ₂ exchange across North America: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2010, 115, .	3.3	247
6	Towards a universal model for carbon dioxide uptake by plants. Nature Plants, 2017, 3, 734-741.	9.3	237
7	Effect of Drought on Agronomic Traits of Rice and Wheat: A Meta-Analysis. International Journal of Environmental Research and Public Health, 2018, 15, 839.	2.6	208
8	Global satellite monitoring of climate-induced vegetation disturbances. Trends in Plant Science, 2015, 20, 114-123.	8.8	183
9	TRIPLEX: a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics. Ecological Modelling, 2002, 153, 109-130.	2.5	175
10	Past and future carbon sequestration benefits of China's grain for green program. Global Environmental Change, 2017, 47, 13-20.	7.8	161
11	Methane emissions from the surface of the Three Gorges Reservoir. Journal of Geophysical Research, 2011, 116, .	3.3	150
12	Chinese Grain for Green Program led to highly increased soil organic carbon levels: A meta-analysis. Scientific Reports, 2014, 4, 4460.	3.3	137
13	The Global N2O Model Intercomparison Project. Bulletin of the American Meteorological Society, 2018, 99, 1231-1251.	3.3	123
14	Dynamic allocation and transfer of non-structural carbohydrates, a possible mechanism for the explosive growth of Moso bamboo (Phyllostachys heterocycla). Scientific Reports, 2016, 6, 25908.	3.3	118
15	Soil GHG fluxes are altered by N deposition: New data indicate lower N stimulation of the N ₂ O flux and greater stimulation of the calculated C pools. Global Change Biology, 2020, 26, 2613-2629.	9.5	115
16	Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China. Geoderma, 2019, 353, 188-200.	5.1	114
17	Does growing vegetables in plastic greenhouses enhance regional ecosystem services beyond the food supply?. Frontiers in Ecology and the Environment, 2013, 11, 43-49.	4.0	110
18	The carbon flux of global rivers: A re-evaluation of amount and spatial patterns. Ecological Indicators, 2017, 80, 40-51.	6.3	106

#	Article	IF	CITATIONS
19	Phosphorus and nitrogen physiology of two contrasting poplar genotypes when exposed to phosphorus and/or nitrogen starvation. Tree Physiology, 2016, 36, 22-38.	3.1	103
20	Application of machine-learning methods in forest ecology: recent progress and future challenges. Environmental Reviews, 2018, 26, 339-350.	4.5	90
21	A global meta-analysis of changes in soil carbon, nitrogen, phosphorus and sulfur, and stoichiometric shifts after forestation. Plant and Soil, 2016, 407, 323-340.	3.7	87
22	Integrating models with data in ecology and palaeoecology: advances towards a model-data fusion approach. Ecology Letters, 2011, 14, 522-536.	6.4	80
23	Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Science of the Total Environment, 2018, 637-638, 855-864.	8.0	76
24	Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. Journal of Environmental Management, 2019, 250, 109403.	7.8	76
25	Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis. Journal of Geophysical Research, 2011, 116, .	3.3	72
26	Contrasting Soil Bacterial Community, Diversity, and Function in Two Forests in China. Frontiers in Microbiology, 2018, 9, 1693.	3.5	72
27	<i>p</i> CO ₂ and CO ₂ fluxes of the metropolitan river network in relation to the urbanization of Chongqing, China. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 470-486.	3.0	71
28	Photosynthetic responses to altitude: an explanation based on optimality principles. New Phytologist, 2017, 213, 976-982.	7.3	71
29	From plant functional types to plant functional traits. Progress in Physical Geography, 2015, 39, 514-535.	3.2	70
30	Model prediction of biomeâ€specific global soil respiration from 1960 to 2012. Earth's Future, 2017, 5, 715-729.	6.3	60
31	Quantifying leafâ€trait covariation and its controls across climates and biomes. New Phytologist, 2019, 221, 155-168.	7.3	60
32	Nitrogen addition increased CO ₂ uptake more than non-CO ₂ greenhouse gases emissions in a Moso bamboo forest. Science Advances, 2020, 6, eaaw5790.	10.3	60
33	Field-experiment constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature Geoscience, 2019, 12, 809-814.	12.9	58
34	Leaf \hat{l} (sup>13 (sup>C reflects ecosystem patterns and responses of alpine plants to the environments on the Tibetan Plateau. Ecography, 2008, 31, 499-508.	4.5	57
35	Estimating global natural wetland methane emissions using process modelling: spatioâ€ŧemporal patterns and contributions to atmospheric methane fluctuations. Global Ecology and Biogeography, 2015, 24, 959-972.	5.8	53
36	Rainfall manipulation experiments as simulated by terrestrial biosphere models: Where do we stand?. Global Change Biology, 2020, 26, 3336-3355.	9.5	50

3

#	Article	IF	Citations
37	General allometric equations and biomass allocation of <i>Pinus massoniana</i> trees on a regional scale in southern China. Ecological Research, 2011, 26, 697-711.	1.5	48
38	Changes in carbon, nutrients and stoichiometric relations under different soil depths, plant tissues and ages in black locust plantations. Acta Physiologiae Plantarum, 2013, 35, 2951-2964.	2.1	48
39	Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model <scp>TRIPLEXâ€GHG</scp> . Journal of Advances in Modeling Earth Systems, 2017, 9, 2368-2384.	3.8	47
40	The significant contribution of lake depth in regulating global lake diffusive methane emissions. Water Research, 2020, 172, 115465.	11.3	47
41	Relationship between Air Pollutants and Economic Development of the Provincial Capital Cities in China during the Past Decade. PLoS ONE, 2014, 9, e104013.	2.5	46
42	Headwater stream ecosystem: an important source of greenhouse gases to the atmosphere. Water Research, 2021, 190, 116738.	11.3	43
43	Quantification of soil respiration in forest ecosystems across China. Atmospheric Environment, 2014, 94, 546-551.	4.1	42
44	Carbon accumulation and sequestration of lakes in China during the Holocene. Global Change Biology, 2015, 21, 4436-4448.	9.5	42
45	Modeling the effects of precipitation and temperature patterns on agricultural drought in China from 1949 to 2015. Science of the Total Environment, 2020, 711, 135139.	8.0	42
46	Positive responses of belowground C dynamics to nitrogen enrichment in China. Science of the Total Environment, 2018, 616-617, 1035-1044.	8.0	41
47	Qinghai–tibetan plateau peatland sustainable utilization under anthropogenic disturbances and climate change. Ecosystem Health and Sustainability, 2017, 3, .	3.1	40
48	CH4 concentrations and fluxes in a subtropical metropolitan river network: Watershed urbanization impacts and environmental controls. Science of the Total Environment, 2018, 622-623, 1079-1089.	8.0	40
49	Comparison of methane emissions among invasive and native mangrove species in Dongzhaigang, Hainan Island. Science of the Total Environment, 2019, 697, 133945.	8.0	40
50	Factors Affecting the Spatial and Temporal Variations in Soil Erodibility of China. Journal of Geophysical Research F: Earth Surface, 2019, 124, 737-749.	2.8	40
51	Degradation of lignin and cellulose during foliar litter decomposition in an alpine forest river. Ecosphere, 2016, 7, e01523.	2.2	39
52	Vegetation Functional Properties Determine Uncertainty of Simulated Ecosystem Productivity: A Traceability Analysis in the East Asian Monsoon Region. Global Biogeochemical Cycles, 2019, 33, 668-689.	4.9	38
53	The effects of plant diversity on nitrous oxide emissions in hydroponic microcosms. Atmospheric Environment, 2013, 77, 544-547.	4.1	37
54	Estimates and Predictions of Methane Emissions from Wastewater in China from 2000 to 2020. Earth's Future, 2018, 6, 252-263.	6.3	37

#	Article	IF	Citations
55	Carbon and Water Use Efficiencies: A Comparative Analysis of Ten Terrestrial Ecosystem Models under Changing Climate. Scientific Reports, 2019, 9, 14680.	3.3	37
56	Quantification of the response of global terrestrial net primary production to multifactor global change. Ecological Indicators, 2017, 76, 245-255.	6.3	36
57	Multi-scale temporal variation of methane flux and its controls in a subtropical tidal salt marsh in eastern China. Biogeochemistry, 2018, 137, 163-179.	3.5	36
58	Spatial and temporal variations of N2O emissions from global forest and grassland ecosystems. Agricultural and Forest Meteorology, 2019, 266-267, 129-139.	4.8	36
59	Uncertainty analysis of terrestrial net primary productivity and net biome productivity in China during 1901–2005. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1372-1393.	3.0	35
60	Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Science of the Total Environment, 2016, 566-567, 279-287.	8.0	34
61	Modeling Global Riverine DOC Flux Dynamics From 1951 to 2015. Journal of Advances in Modeling Earth Systems, 2019, 11, 514-530.	3.8	34
62	Responses of peat carbon at different depths to simulated warming and oxidizing. Science of the Total Environment, 2016, 548-549, 429-440.	8.0	32
63	Global response of terrestrial gross primary productivity to climate extremes. Science of the Total Environment, 2021, 750, 142337.	8.0	32
64	Decadal trends in the seasonal-cycle amplitude of terrestrial CO ₂ exchange resulting from the ensemble of terrestrial biosphere models. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 28968.	1.6	31
65	Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China. Environmental Monitoring and Assessment, 2016, 188, 678.	2.7	31
66	Temporalâ€spatial pattern of organic carbon sequestration by Chinese lakes since 1850. Limnology and Oceanography, 2018, 63, 1283-1297.	3.1	30
67	Physiological and transcriptional regulation in poplar roots and leaves during acclimation to high temperature and drought. Physiologia Plantarum, 2016, 157, 38-53.	5.2	29
68	Individual and combined effects of multiple global change drivers on terrestrial phosphorus pools: A meta-analysis. Science of the Total Environment, 2018, 630, 181-188.	8.0	29
69	Early-spring soil warming partially offsets the enhancement of alpine grassland aboveground productivity induced by warmer growing seasons on the Qinghai-Tibetan Plateau. Plant and Soil, 2018, 425, 177-188.	3.7	29
70	Interannual variation in methane emissions from tropical wetlands triggered by repeated El Niño Southern Oscillation. Global Change Biology, 2017, 23, 4706-4716.	9.5	28
71	Modeling and estimating aboveground biomass of Dacrydium pierrei in China using machine learning with climate change. Journal of Environmental Management, 2019, 234, 167-179.	7.8	28
72	Warmingâ€induced global soil carbon loss attenuated by downward carbon movement. Global Change Biology, 2020, 26, 7242-7254.	9.5	28

#	Article	lF	Citations
73	Change in Autumn Vegetation Phenology and the Climate Controls From 1982 to 2012 on the Qinghai–Tibet Plateau. Frontiers in Plant Science, 2019, 10, 1677.	3.6	27
74	Dynamic allometric scaling of tree biomass and size. Nature Plants, 2021, 7, 42-49.	9.3	27
75	Quantifying the Effects of Vegetation Restorations on the Soil Erosion Export and Nutrient Loss on the Loess Plateau. Frontiers in Plant Science, 2020, 11, 573126.	3. 6	24
76	Effects of elevated sulfate concentration on the mobility of arsenic in the sediment–water interface. Ecotoxicology and Environmental Safety, 2018, 154, 311-320.	6.0	22
77	Structural and functional differentiation of the microbial community in the surface and subsurface peat of two minerotrophic fens in China. Plant and Soil, 2019, 437, 21-40.	3.7	22
78	Effects of Topographic and Soil Factors on Woody Species Assembly in a Chinese Subtropical Evergreen Broadleaved Forest. Forests, 2015, 6, 650-669.	2.1	20
79	Study type and plant litter identity modulating the response of litter decomposition to warming, elevated CO ₂ , and elevated O ₃ : A metaâ€analysis. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 441-451.	3.0	20
80	Comparative analyses of different biogenic CO2 emission accounting systems in life cycle assessment. Science of the Total Environment, 2019, 652, 1456-1462.	8.0	20
81	Applying an artificial neural network to simulate and predict Chinese fir (Cunninghamia lanceolata) plantation carbon flux in subtropical China. Ecological Modelling, 2014, 294, 19-26.	2.5	19
82	A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. Scientific Reports, 2016, 6, 24110.	3.3	19
83	The Effects of Drought and Re-Watering on Non-Structural Carbohydrates of Pinus tabulaeformis Seedlings. Biology, 2021, 10, 281.	2.8	19
84	Assessment of frozen ground organic carbon pool on the Qinghai-Tibet Plateau. Journal of Soils and Sediments, 2019, 19, 128-139.	3.0	18
85	Focus on quality, not just quantity. Nature, 2011, 475, 267-267.	27.8	17
86	Spatial patterns of leaf \hat{l} (sup>13C and its relationship with plant functional groups and environmental factors in China. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1564-1575.	3.0	17
87	Effects of vegetation restoration on soil nutrients, plant diversity, and its spatiotemporal heterogeneity in a <scp>desert–oasis</scp> ecotone. Land Degradation and Development, 2021, 32, 670-683.	3.9	17
88	The Spatial and Temporal Distribution of Dissolved Organic Carbon Exported from Three Chinese Rivers to the China Sea. PLoS ONE, 2016, 11, e0165039.	2.5	17
89	Roles of Koelreuteria bipinnata as a suitable accumulator tree species in remediating Mn, Zn, Pb, and Cd pollution on Mn mining wastelands in southern China. Environmental Earth Sciences, 2015, 74, 4549-4559.	2.7	16
90	Tillage activates iron to prevent soil organic carbon loss following forest conversion to cornfields in tropical acidic red soils. Science of the Total Environment, 2021, 761, 143253.	8.0	16

#	Article	IF	Citations
91	Nitrogen addition decreases methane uptake caused by methanotroph and methanogen imbalances in a Moso bamboo forest. Scientific Reports, 2021, 11, 5578.	3.3	16
92	Global vegetation biomass production efficiency constrained by models and observations. Global Change Biology, 2020, 26, 1474-1484.	9.5	15
93	A Processâ€Based Model Integrating Remote Sensing Data for Evaluating Ecosystem Services. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002451.	3.8	15
94	Effects of enclosure time on the community composition of methanotrophs in the soils of the Inner Mongolia grasslands. Journal of Soils and Sediments, 2016, 16, 1022-1031.	3.0	14
95	Processâ€based <scp>TRIPLEXâ€GHG</scp> model for simulating <scp>N</scp> ₂ <scp>O</scp> emissions from global forests and grasslands: <scp>M</scp> odel development and evaluation. Journal of Advances in Modeling Earth Systems, 2017, 9, 2079-2102.	3.8	14
96	Hydrologic and Edaphic Controls on Soil Carbon Emission in Dongting Lake Floodplain, China. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3088-3097.	3.0	14
97	Effects of Land Cover Changes on Net Primary Productivity in the Terrestrial Ecosystems of China from 2001 to 2012. Land, 2020, 9, 480.	2.9	14
98	Effect of Urbanization on Ecosystem Service Values in the Beijing-Tianjin-Hebei Urban Agglomeration of China from 2000 to 2014. Sustainability, 2020, 12, 10233.	3.2	14
99	New coupled model used inversely for reconstructing past terrestrial carbon storage from pollen data: validation of model using modern data. Global Change Biology, 2009, 15, 82-96.	9.5	13
100	Marginal effects of silvicultural treatments on soil nutrients following harvest in a Chinese fir plantation. Soil Science and Plant Nutrition, 2009, 55, 523-531.	1.9	13
101	Towards a paradigm for open and free sharing of scientific data on global change science in china. Ecosystem Health and Sustainability, 2016, 2, .	3.1	13
102	Climate-driven increase of natural wetland methane emissions offset by human-induced wetland reduction in China over the past three decades. Scientific Reports, 2016, 6, 38020.	3.3	13
103	Simulated effects of nitrogen saturation on the global carbon budget using the IBIS model. Scientific Reports, 2016, 6, 39173.	3.3	13
104	Modeling Gross Primary Production of a Typical Coastal Wetland in China Using MODIS Time Series and CO2 Eddy Flux Tower Data. Remote Sensing, 2018, 10, 708.	4.0	13
105	Assessment of biomass utilization potential of <i>Caragana korshinskii</i> and its effect on carbon sequestration on the Northern Shaanxi Loess Plateau, China. Land Degradation and Development, 2020, 31, 53-64.	3.9	13
106	A Review of General Methods for Quantifying and Estimating Urban Trees and Biomass. Forests, 2022, 13, 616.	2.1	13
107	Variation in runoff with age of Chinese fir plantations in Central South China. Hydrological Processes, 2008, 22, 4870-4876.	2.6	12
108	Simulations of runoff and evapotranspiration in Chinese fir plantation ecosystems using artificial neural networks. Ecological Modelling, 2012, 226, 71-76.	2.5	12

#	Article	IF	CITATIONS
109	Allocation Mechanisms of Non-Structural Carbohydrates of Robinia pseudoacacia L. Seedlings in Response to Drought and Waterlogging. Forests, 2018, 9, 754.	2.1	12
110	Analysis of vegetation dynamics and climatic variability impacts on greenness across Canada using remotely sensed data from 2000 to 2009. Journal of Applied Remote Sensing, 2014, 8, 083666.	1.3	11
111	Correcting the overestimate of forest biomass carbon on the national scale. Methods in Ecology and Evolution, 2016, 7, 447-455.	5.2	11
112	Trait-Based Climate Change Predictions of Vegetation Sensitivity and Distribution in China. Frontiers in Plant Science, 2019, 10, 908.	3.6	11
113	High uncertainties detected in the wetlands distribution of the Qinghai–Tibet Plateau based on multisource data. Landscape and Ecological Engineering, 2020, 16, 47-61.	1.5	11
114	Integrating global socio-economic influences into a regional land use change model for China. Frontiers of Earth Science, 2014, 8, 81-92.	2.1	10
115	Integrating a model with remote sensing observations by a data assimilation approach to improve the model simulation accuracy of carbon flux and evapotranspiration at two flux sites. Science China Earth Sciences, 2016, 59, 337-348.	5.2	9
116	Tree species effects on fine root decomposition and nitrogen release in subtropical forests in southern China. Plant Ecology and Diversity, 2012, 5, 323-331.	2.4	8
117	Variation in Soil Methane Fluxes and Comparison between Two Forests in China. Forests, 2018, 9, 204.	2.1	7
118	Effect of Grazing Intensities on Soil N2O Emissions from an Alpine Meadow of Zoige Plateau in China. Atmosphere, 2021, 12, 541.	2.3	7
119	Response of Vegetation Photosynthetic Phenology to Urbanization in Dongting Lake Basin, China. Remote Sensing, 2021, 13, 3722.	4.0	7
120	Application of the ecosystem model and Markov Chain Monte Carlo for parameter estimation and productivity prediction. Ecosphere, 2015, 6, art270.	2.2	6
121	The Effect of the Conversion from Natural Broadleaved Forests into Chinese fir (Cunninghamia) Tj ETQq1 1 0.7843 Forests, 2022, 13, 158.	314 rgBT / 2.1	Overlock 10 6
122	Recent advances in carbon footprint studies of urban ecosystems: overview, application, and future challenges. Environmental Reviews, 2022, 30, 342-356.	4.5	6
123	Long-term changes in tree basal area across the boreal zone, Canada. Ecoscience, 2014, 21, 232-241.	1.4	5
124	Soil Carbon Dioxide Fluxes from Three Forest Types of the Tropical Montane Rainforest on Hainan Island, China. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	5
125	Holocene peatland development and carbon stock of Zoige peatlands, Tibetan Plateau: a modeling approach. Journal of Soils and Sediments, 2018, 18, 2032-2043.	3.0	5
126	Changes in soil organic carbon and microbial carbon storage projected during the 21st century using TRIPLEX-MICROBE. Ecological Indicators, 2019, 98, 80-87.	6.3	5

#	Article	IF	Citations
127	Application of machine learning methods for paleoclimatic reconstructions from leaf traits. International Journal of Climatology, 2021, 41, E3249.	3.5	5
128	Evaluation of Future Impacts of Climate Change, CO2, and Land Use Cover Change on Global Net Primary Productivity Using a Processed Model. Land, 2021, 10, 365.	2.9	5
129	Leaf Trait Covariation and Its Controls: A Quantitative Data Analysis Along a Subtropical Elevation Gradient. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006378.	3.0	5
130	Quantifying Leaf Trait Covariations and Their Relationships with Plant Adaptation Strategies along an Aridity Gradient. Biology, 2021, 10, 1066.	2.8	5
131	Climate Change Will Reduce the Carbon Use Efficiency of Terrestrial Ecosystems on the Qinghai-Tibet Plateau: An Analysis Based on Multiple Models. Forests, 2021, 12, 12.	2.1	5
132	Nitrous oxide emissions from three temperate forest types in the Qinling Mountains, China. Journal of Forestry Research, 2019, 30, 1417-1427.	3.6	4
133	Simulation of dissolved organic carbon concentrations and fluxes in Chinese monsoon forest ecosystems using a modified TRIPLEX-DOC model. Science of the Total Environment, 2019, 697, 134054.	8.0	4
134	The Characteristics and Seasonal Variation of Methane Fluxes From an Alpine Wetland in the Qinghai Lake watershed, China. Wetlands, 2021, 41, 1.	1.5	4
135	Analysis and Prediction of Expansion of Central Cities Based on Nighttime Light Data in Hunan Province, China. Sustainability, 2021, 13, 11982.	3.2	4
136	Monitoring the impact of aerosol contamination on the drought-induced decline of gross primary productivity. International Journal of Applied Earth Observation and Geoinformation, 2015, 36, 30-40.	2.8	3
137	Data supporting assessment for nitrous oxide emissions from soils under traditional cropland and apple orchard in the Loess Plateau of China. Data in Brief, 2018, 21, 1381-1388.	1.0	3
138	Interspecific difference in N:P stoichiometric homeostasis drives nutrient release and soil microbial community composition during decomposition. Plant and Soil, 2020, 452, 29-42.	3.7	3
139	Effects of Nitrogen Additions on Soil Respiration in an Asian Tropical Montane Rainforest. Forests, 2021, 12, 802.	2.1	3
140	Observed Methane Uptake and Emissions at the Ecosystem Scale and Environmental Controls in a Subtropical Forest. Land, 2021, 10, 975.	2.9	3
141	The NEBIE plot network: Highlights of long-term scientific studies. Forestry Chronicle, 2017, 93, 122-137.	0.6	3
142	Estimating natural nitrous oxide emissions from the Qinghai–Tibetan Plateau using a process-based model: Historical spatiotemporal patterns and future trends. Ecological Modelling, 2022, 466, 109902.	2.5	3
143	Gross Ecosystem Productivity Dominates the Control of Ecosystem Methane Flux in Rice Paddies. Land, 2021, 10, 1186.	2.9	2
144	The Importance of Energy Theory in Shaping Elevational Species Richness Patterns in Plants. Biology, 2022, 11, 819.	2.8	2

#	Article	lF	CITATIONS
145	Assessing the spatio-temporal variation and uncertainty patterns of historical and future projected water resources in China. Journal of Water and Climate Change, 2013, 4, 302-316.	2.9	1
146	Large-scale detection of vegetation dynamics using MODIS images and BFAST: A case study in Quebec, Canada. , 2014, , .		1
147	No evidence for carryover effect in tree rings based on a pulse-labelling experiment on Juniperus communis in South Germany. Trees - Structure and Function, 2021, 35, 493-502.	1.9	1
148	Global patterns of particulate organic carbon export from land to the ocean. Ecohydrology, 2022, 15, e2373.	2.4	1
149	Temporal and Spatial Variation of Wetland CH4 Emissions from the Qinghai–Tibet Plateau under Future Climate Change Scenarios. Atmosphere, 2022, 13, 854.	2.3	1
150	Quantification of Ecosystem-Scale Methane Sinks Observed in a Tropical Rainforest in Hainan, China. Land, 2022, 11, 154.	2.9	0
151	Contribution of the Order Ericales to Improving Paleoclimate Reconstructions. Sustainability, 2022, 14, 4008.	3.2	0
152	Contribution of Incorporating the Phosphorus Cycle into TRIPLEX-CNP to Improve the Quantification of Land Carbon Cycle. Land, 2022, 11, 778.	2.9	0
153	Evaluating and quantifying the effect of various spruce budworm intervention strategies on forest carbon dynamics in Atlantic Canada. Forest Ecosystems, 2022, 9, 100052.	3.1	0