Pilar Redondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5613102/publications.pdf

Version: 2024-02-01

623734 677142 1,013 22 14 22 h-index citations g-index papers 22 22 22 1159 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research, 2006, 34, e149-e149.	14.5	271
2	Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature, 2008, 456, 107-111.	27.8	150
3	Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Research, 2009, 37, 5405-5419.	14.5	146
4	Structural and mechanistic insights into mechanoactivation of focal adhesion kinase. Proceedings of the National Academy of Sciences of the United States of America, $2019, 116, 6766-6774$.	7.1	90
5	Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Research, 2011, 39, 729-743.	14.5	63
6	Structural basis of Focal Adhesion Kinase activation on lipid membranes. EMBO Journal, 2020, 39, e104743.	7.8	47
7	Crystal structure of I-Dmol in complex with its target DNA provides new insights into meganuclease engineering. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16888-16893.	7.1	36
8	Visualizing phosphodiester-bond hydrolysis by an endonuclease. Nature Structural and Molecular Biology, 2015, 22, 65-72.	8.2	30
9	The C-terminal loop of the homing endonuclease I-Crel is essential for site recognition, DNA binding and cleavage. Nucleic Acids Research, 2007, 35, 3262-3271.	14.5	25
10	Structure and Non-Structure of Centrosomal Proteins. PLoS ONE, 2013, 8, e62633.	2.5	25
11	Non-specific protein–DNA interactions control I-Crel target binding and cleavage. Nucleic Acids Research, 2012, 40, 6936-6945.	14.5	24
12	Molecular basis of Tousled-Like Kinase 2 activation. Nature Communications, 2018, 9, 2535.	12.8	24
13	5′-Cytosine-Phosphoguanine (CpG) Methylation Impacts the Activity of Natural and Engineered Meganucleases. Journal of Biological Chemistry, 2012, 287, 30139-30150.	3.4	23
14	Generation and Analysis of Mesophilic Variants of the Thermostable Archaeal I-DmoI Homing Endonuclease. Journal of Biological Chemistry, 2008, 283, 4364-4374.	3.4	17
15	Understanding the indirect DNA read-out specificity of I-Crel Meganuclease. Scientific Reports, 2018, 8, 10286.	3.3	12
16	Engineering a Nickase on the Homing Endonuclease I-DmoI Scaffold. Journal of Biological Chemistry, 2015, 290, 18534-18544.	3.4	7
17	Structure of the I-Scel nuclease complexed with its dsDNA target and three catalytic metal ions. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 473-479.	0.8	6
18	Crystallization and preliminary X-ray diffraction analysis on the homing endonuclease I-Dmo-I in complex with its target DNA. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 1017-1020.	0.7	5

#	Article	lF	CITATION
19	Crystallization and preliminary X-ray diffraction analysis of the dimerization domain of the tumour suppressor ING4. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 567-570.	0.7	5
20	Purification, crystallization and preliminary X-ray diffraction analysis of the kinase domain of human tousled-like kinase 2. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 354-357.	0.8	3
21	Crystallization and preliminary X-ray diffraction analysis of the homing endonuclease I-Cvul fromChlorella vulgarisin complex with its target DNA. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 256-259.	0.8	2
22	Crystal Structure of the Homing Endonuclease I-Cvul Provides a New Template for Genome Modification. Journal of Biological Chemistry, 2015, 290, 28727-28736.	3.4	2