Jens Artz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/561304/publications.pdf

Version: 2024-02-01

15	6.45	840776	996975	
15	645	11	15	
papers	citations	h-index	g-index	
15	15	15	1024	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Selective Aerobic Oxidation of HMF to 2,5â€Diformylfuran on Covalent Triazine Frameworksâ€Supported Ru Catalysts. ChemSusChem, 2015, 8, 672-679.	6.8	173
2	Baseâ€Free Aqueousâ€Phase Oxidation of 5â€Hydroxymethylfurfural over Ruthenium Catalysts Supported on Covalent Triazine Frameworks. ChemSusChem, 2015, 8, 3832-3838.	6.8	110
3	Covalent Triazineâ€based Frameworks—Tailorâ€made Catalysts and Catalyst Supports for Molecular and Nanoparticulate Species. ChemCatChem, 2018, 10, 1753-1771.	3.7	80
4	Electrocatalytic upgrading of itaconic acid to methylsuccinic acid using fermentation broth as a substrate solution. Green Chemistry, 2017, 19, 2390-2397.	9.0	46
5	N-containing covalent organic frameworks as supports for rhodium as transition-metal catalysts in hydroformylation reactions. Microporous and Mesoporous Materials, 2016, 227, 219-227.	4.4	35
6	Superior activity and selectivity of heterogenized cobalt catalysts for hydrogenation of nitroarenes. Catalysis Science and Technology, 2019, 9, 157-162.	4.1	34
7	Electrochemical cross-coupling of biogenic di-acids for sustainable fuel production. Green Chemistry, 2019, 21, 2334-2344.	9.0	32
8	Producing Widespread Monomers from Biomass Using Economical Carbon and Ruthenium–Titanium Dioxide Electrocatalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 17108-17113.	6.7	31
9	Selective production of glycols from xylitol over Ru on covalent triazine frameworks – suppressing decarbonylation reactions. Green Chemistry, 2018, 20, 1316-1322.	9.0	29
10	Efficient Photocatalytic Oxidation of Aromatic Alcohols over Thiopheneâ€based Covalent Triazine Frameworks with A Narrow Band Gap. ChemistrySelect, 2020, 5, 14438-14446.	1.5	21
11	Catalytic deoxygenation of bio-based 3-hydroxydecanoic acid to secondary alcohols and alkanes. Green Chemistry, 2020, 22, 3522-3531.	9.0	18
12	Playing with covalent triazine framework tiles for improved CO ₂ adsorption properties and catalytic performance. Beilstein Journal of Nanotechnology, 2019, 10, 1217-1227.	2.8	12
13	Sulfonated covalent triazine-based frameworks as catalysts for the hydrolysis of cellobiose to glucose. RSC Advances, 2018, 8, 22392-22401.	3. 6	8
14	Metal free-covalent triazine frameworks as oxygen reduction reaction catalysts – structure–electrochemical activity relationship. Catalysis Science and Technology, 2021, 11, 6191-6204.	4.1	8
15	Particle size-controlled synthesis of high-performance MnCo-based materials for alkaline OER at fluctuating potentials. Catalysis Science and Technology, 2021, 11, 7278-7286.	4.1	8