Clarence J Swanton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5612842/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Weed science and the clock of the long now. Weed Science, 2022, 70, 369-369.	0.8	2
2	The Role of Engineering Thermodynamics in Explaining the Inverse Correlation between Surface Temperature and Supplied Nitrogen Rate in Corn Plants: A Greenhouse Case Study. Agriculture (Switzerland), 2021, 11, 101.	1.4	2
3	The neonicotinoid insecticide thiamethoxam enhances expression of stress-response genes in Zea mays in an environmentally specific pattern. Genome, 2021, 64, 1-13.	0.9	5
4	Effects of Nitrogen Stress on Crop Surface Temperature and Leaf Thermal Emissivity: A Greenhouse Case Study. , 2021, , .		0
5	An integrated weed management strategy for the control of horseweed (<i>Conyza canadensis</i>). Weed Science, 2021, 69, 119-127.	0.8	5
6	Duration of Weed Presence Influences the Recovery of Photosynthetic Efficiency and Yield in Common Bean (Phaseolus vulgaris L.). Frontiers in Agronomy, 2020, 2, .	1.5	6
7	A linuron-free weed management strategy for carrots. Weed Technology, 2019, 33, 464-474.	0.4	2
8	Early physiological and biochemical responses of soyabean to neighbouring weeds under resourceâ€independent competition. Weed Research, 2019, 59, 288-299.	0.8	10
9	The relationship between floret number and plant dry matter accumulation varies with early season stress in maize (Zea mays L.). Field Crops Research, 2019, 238, 129-138.	2.3	31
10	An Inverse Correlation between Corn Temperature and Nitrogen Stress: A Field Case Study. Agronomy Journal, 2019, 111, 3207-3219.	0.9	5
11	Weed Management in 2050: Perspectives on the Future of Weed Science. Weed Science, 2018, 66, 275-285.	0.8	203
12	Precision conservation meets precision agriculture: A case study from southern Ontario. Agricultural Systems, 2018, 167, 176-185.	3.2	40
13	When too much isn't enough: Does current food production meet global nutritional needs?. PLoS ONE, 2018, 13, e0205683.	1.1	110
14	Kin recognition, multilevel selection and altruism in crop sustainability. Journal of Ecology, 2017, 105, 930-934.	1.9	40
15	Identity recognition in response to different levels of genetic relatedness in commercial soya bean. Royal Society Open Science, 2017, 4, 160879.	1.1	27
16	Weed control, environmental impact, and net revenue of two-pass weed management strategies in dicamba-resistant soybean. Canadian Journal of Plant Science, 2017, , .	0.3	2
17	Rapid and early changes in morphology and gene expression in soya bean seedlings emerging in the presence of neighbouring weeds. Weed Research, 2016, 56, 267-273.	0.8	12
18	The Addition of Dicamba to POST Applications of Quizalofop-p-ethyl or Clethodim Antagonizes Volunteer Glyphosate-Resistant Corn Control in Dicamba-Resistant Soybean. Weed Technology, 2016, 30, 639-647.	0.4	19

#	Article	IF	CITATIONS
19	Changes in light quality alter physiological responses of soybean to thiamethoxam. Planta, 2016, 244, 639-650.	1.6	5
20	Does the presence of neighbouring weeds alter the expression of adaptive plasticity to subsequent drought stress in soybean?. Field Crops Research, 2016, 192, 144-153.	2.3	7
21	<i>Brevis plant1</i> , a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. Journal of Experimental Botany, 2016, 67, 1577-1588.	2.4	29
22	Pre- and post-vernalization ramet removal reduces flowering of red sorrel (Rumex acetosellaL.) in wild blueberry (Vaccinium angustifoliumAit.). Canadian Journal of Plant Science, 2015, 95, 549-556.	0.3	2
23	Maize (<i>Zea mays</i>) seeds can detect aboveâ€ground weeds; thiamethoxam alters the view. Pest Management Science, 2015, 71, 1335-1345.	1.7	6
24	Detection of Neighboring Weeds Alters Soybean Seedling Roots and Nodulation. Weed Science, 2015, 63, 888-900.	0.8	11
25	Studies on the flowering biology of red sorrel (<i>Rumex acetosella</i>) ramets from lowbush blueberry (<i>Vaccinium angustifolium</i>) fields in Nova Scotia, Canada. Botany, 2015, 93, 41-46.	0.5	5
26	Experimental Methods for Crop–Weed Competition Studies. Weed Science, 2015, 63, 2-11.	0.8	130
27	Weed Abundance, Distribution, Diversity, and Community Analyses. Weed Science, 2015, 63, 64-90.	0.8	71
28	Delaying Weed Control Lengthens the Anthesis-Silking Interval in Maize. Weed Science, 2014, 62, 326-337.	0.8	11
29	Field and Greenhouse Bioassays to Determine Mesotrione Residues in Soil. Weed Technology, 2013, 27, 565-572.	0.4	9
30	Crop Response to Carryover of Mesotrione Residues in the Field. Weed Technology, 2013, 27, 92-100.	0.4	16
31	Mechanisms of Yield Loss in Maize Caused by Weed Competition. Weed Science, 2012, 60, 225-232.	0.8	28
32	Light Quality and the Critical Period for Weed Control in Soybean. Weed Science, 2012, 60, 86-91.	0.8	49
33	Why Early Season Weed Control Is Important in Maize. Weed Science, 2012, 60, 423-430.	0.8	60
34	Early Physiological Mechanisms of Weed Competition. Weed Science, 2012, 60, 542-551.	0.8	41
35	Influence of nitrogen rate on the efficacy of herbicides with different modes of action. Weed Research, 2012, 52, 169-177.	0.8	17
36	Shade Avoidance Influences Stress Tolerance in Maize. Weed Science, 2011, 59, 326-334.	0.8	26

#	Article	IF	CITATIONS
37	Efficacy of Saflufenacil plus Dimethenamid-P for Weed Control in Corn. Weed Technology, 2011, 25, 330-334.	0.4	9
38	Weeds and the Red to Far-Red Ratio of Reflected Light: Characterizing the Influence of Herbicide Selection, Dose, and Weed Species. Weed Science, 2011, 59, 424-430.	0.8	8
39	Shade Avoidance in Soybean Reduces Branching and Increases Plant-to-Plant Variability in Biomass and Yield Per Plant. Weed Science, 2011, 59, 43-49.	0.8	59
40	The effect of residual corn herbicides on injury and yield of soybean seeded in the same season. Canadian Journal of Plant Science, 2011, 91, 571-576.	0.3	9
41	Similarities between the discovery and regulation of pharmaceuticals and pesticides: in support of a better understanding of the risks and benefits of each. Pest Management Science, 2011, 67, 790-797.	1.7	21
42	The Biology of Canadian Weeds. 145. Muhlenbergia frondosa (Poir.) Fernald. Canadian Journal of Plant Science, 2011, 91, 205-219.	0.3	1
43	Sodium Safens Saflufenacil Applied Postemergence to Corn (<i>Zea mays</i>). Weed Science, 2011, 59, 4-13.	0.8	8
44	Weed control and yield response to mesotrione in maize (Zea mays). Crop Protection, 2010, 29, 652-657.	1.0	25
45	Control of volunteer cereals with post-emergence herbicides in maize (Zea mays L.). Crop Protection, 2010, 29, 1389-1395.	1.0	5
46	Shade avoidance: an integral component of crop–weed competition. Weed Research, 2010, 50, 281-288.	0.8	89
47	Timing, Effect, and Recovery from Intraspecific Competition in Maize. Agronomy Journal, 2010, 102, 1007-1013.	0.9	16
48	The Critical Weed-Free Period in Carrot. Weed Science, 2010, 58, 229-233.	0.8	48
49	Glyphosate-Resistant Cropping Systems in Ontario: Multivariate and Nominal Trait-Based Weed Community Structure. Weed Science, 2010, 58, 278-288.	0.8	19
50	Conventional vs. Glyphosate-Resistant Cropping Systems in Ontario: Weed Control, Diversity, and Yield. Weed Science, 2009, 57, 665-672.	0.8	16
51	Broccoli growth in response to increasing rates of pre-plant nitrogen. II. Dry matter and nitrogen accumulation. Canadian Journal of Plant Science, 2009, 89, 539-548.	0.3	17
52	Soybean response to simulated dicamba/diflufenzopyr drift followed by postemergence herbicides. Crop Protection, 2009, 28, 539-542.	1.0	18
53	The importance of light quality in crop–weed competition. Weed Research, 2009, 49, 217-224. 	0.8	84
54	Does the shade avoidance response contribute to the critical period for weed control in maize (<i>Zea mays</i>)?. Weed Research, 2009, 49, 563-571.	0.8	62

#	Article	IF	CITATIONS
55	Roundup ReadyÃ,®soybean gene concentrations in field soil aggregate size classes. FEMS Microbiology Letters, 2009, 291, 175-179.	0.7	3
56	Separating the effect of crop from herbicide on soil microbial communities in glyphosate-resistant corn. Pedobiologia, 2009, 52, 253-262.	0.5	53
57	Effect of glyphosate on the tripartite symbiosis formed by Glomus intraradices, Bradyrhizobium japonicum, and genetically modified soybean. Applied Soil Ecology, 2009, 41, 128-136.	2.1	44
58	Detection of transgenic cp4 epsps genes in the soil food web. Agronomy for Sustainable Development, 2009, 29, 497-501.	2.2	22
59	Response of Corn to Simulated Glyphosate Drift Followed by In-Crop Herbicides. Weed Technology, 2009, 23, 11-16.	0.4	22
60	Effects of genetically modified, herbicideâ€ŧolerant crops and their management on soil food web properties and crop litter decomposition. Journal of Applied Ecology, 2009, 46, 388-396.	1.9	53
61	Simulated mesotrione drift followed by glyphosate, imazethapyr, bentazon or glyphosate plus chlorimuron in soybean. Canadian Journal of Plant Science, 2009, 89, 265-272.	0.3	1
62	Broccoli growth in response to increasing rates of pre-plant nitrogen. I. Yield and quality. Canadian Journal of Plant Science, 2009, 89, 527-537.	0.3	26
63	Growth and fitness of triazine-susceptible and triazine-resistant common waterhemp (Amaranthus) Tj ETQq 11	0.784314	rgBT /Overloc
64	Effect of amitrole and 2,4-D applied preplant and pre-emergence in soybean (Glycine max). Weed Biology and Management, 2008, 8, 139-144.	0.6	8
65	A critique of studies evaluating glyphosate effects on diseases associated withâ€, <i>Fusarium</i> â€,spp Weed Research, 2008, 48, 307-318.	0.8	27
66	Exploring <i>Chenopodium album</i> adaptive traits in response to light and temperature stresses. Weed Research, 2008, 48, 552-560.	0.8	7
67	Response of white bean (Phaseolus vulgaris) to imazethapyr. Crop Protection, 2008, 27, 672-677.	1.0	7
68	Integrated Weed Management: Knowledge-Based Weed Management Systems. Weed Science, 2008, 56, 168-172.	0.8	89
69	Nitrogen and Light Affect the Adaptive Traits of Common Lambsquarters (Chenopodium album). Weed Science, 2008, 56, 81-90.	0.8	15
70	Two-Way Performance Interactions among <i>Ï</i> -Hydroxyphenylpyruvate Dioxygenase- and Acetolactate Synthase-Inhibiting Herbicides. Weed Science, 2008, 56, 841-851.	0.8	13
71	Physiological Basis for Reduced Glyphosate Efficacy on Weeds Grown Under Low Soil Nitrogen. Weed Science, 2008, 56, 12-17.	0.8	25
72	Factors Affecting the Presence and Persistence of Plant DNA in the Soil Environment in Corn and Soybean Rotations. Weed Science, 2008, 56, 767-774.	0.8	7

#	Article	IF	CITATIONS
73	Real-Time Polymerase Chain Reaction Monitoring of Recombinant DNA Entry into Soil from Decomposing Roundup Ready Leaf Biomass. Journal of Agricultural and Food Chemistry, 2008, 56, 6339-6347.	2.4	13
74	Mycorrhizal and Rhizobial Colonization of Genetically Modified and Conventional Soybeans. Applied and Environmental Microbiology, 2007, 73, 4365-4367.	1.4	46
75	A Rationale for Atrazine Stewardship in Corn. Weed Science, 2007, 55, 75-81.	0.8	34
76	Parameterization of the Phenological Development of Select Annual Weeds Under Noncropped Field Conditions. Weed Science, 2007, 55, 446-454.	0.8	9
77	Control of herbicide-resistant common waterhemp (<i>Amaranthus tuberculatus</i> var.) Tj ETQq1 1 0.784314 2007, 87, 175-182.	rgBT /Ove 0.3	erlock 10 Tf 50 22
78	Weed Control and Yield Response to Foramsulfuron in Corn. Weed Technology, 2007, 21, 453-458.	0.4	23
79	Quantification and Persistence of Recombinant DNA of Roundup Ready Corn and Soybean in Rotation. Journal of Agricultural and Food Chemistry, 2007, 55, 10226-10231.	2.4	10
80	Is the application of a residual herbicide required prior to glyphosate application in no-till glyphosate-tolerant soybean (Glycine max)?. Crop Protection, 2007, 26, 484-489.	1.0	21
81	An empirical approach to target DNA quantification in environmental samples using real-time polymerase chain reactions. Soil Biology and Biochemistry, 2007, 39, 1956-1967.	4.2	7
82	Cycling of extracellular DNA in the soil environment. Soil Biology and Biochemistry, 2007, 39, 2977-2991.	4.2	382
83	Management in a modified no-tillage corn–soybean–wheat rotation influences weed population and community dynamics. Weed Science, 2006, 54, 47-58.	0.8	25
84	Control of Amaranthus tuberculatus var. rudis (common waterhemp) with pre and post-emergence herbicides in Zea mays L. (maize). Crop Protection, 2006, 25, 1051-1056.	1.0	25
85	Weed control and yield are improved when glyphosate is preceded by a residual herbicide in glyphosate-tolerant maize (Zea mays). Crop Protection, 2006, 25, 1174-1179.	1.0	33
86	Promotion of weed species diversity and reduction of weed seedbanks with conservation tillage and crop rotation. Weed Science, 2006, 54, 69-77.	0.8	153
87	Quantitation of Transgenic Plant DNA in Leachate Water:Â Real-Time Polymerase Chain Reaction Analysis. Journal of Agricultural and Food Chemistry, 2005, 53, 5858-5865.	2.4	35
88	Real-Time Polymerase Chain Reaction Quantification of the Transgenes for Roundup Ready Corn and Roundup Ready Soybean in Soil Samples. Journal of Agricultural and Food Chemistry, 2005, 53, 1337-1342.	2.4	34
89	Fertilizer nitrogen rate and the response of weeds to herbicides. Weed Science, 2004, 52, 291-296.	0.8	54
90	Adaptability of plants invading North American cropland. Agriculture, Ecosystems and Environment, 2004, 104, 379-398.	2.5	101

#	Article	IF	CITATIONS
91	Nitrogen and green foxtail (Setaria viridis) competition effects on corn growth and development. Weed Science, 2004, 52, 1039-1049.	0.8	27
92	Red–far-red ratio of reflected light: a hypothesis of why early-season weed control is important in corn. Weed Science, 2004, 52, 774-778.	0.8	115
93	Benefits and Risks of Economic vs. Efficacious Approaches to Weed Management in Corn and Soybean. Weed Technology, 2004, 18, 723-732.	0.4	18
94	Zone tillage systems for onion and carrot production on muck soils. Canadian Journal of Plant Science, 2004, 84, 1167-1169.	0.3	3
95	Reduced Tillage Alternatives for Machine-harvested Cucumbers. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 991-995.	0.5	8
96	Predispersal seed predation of Amaranthus retroflexus and Chenopodium album growing in soyabean fields. Weed Research, 2003, 43, 260-268.	0.8	13
97	Stale-Seedbed as a Weed Management Alternative for Machine-Harvested Cucumbers (Cucumis) Tj ETQq1 1 0.78	4314 rgB ⁻ 0.4	「/Overloch 」 12
98	Nitrogen management will influence threshold values of green foxtail (Setaria viridis) in corn. Weed Science, 2003, 51, 975-986.	0.8	43
99	Predispersal seed predation of redroot pigweed (Amaranthus retroflexus). Weed Science, 2003, 51, 60-68.	0.8	17
100	Evaluation of alternative weed management systems in a modified no-tillage corn–soybean–winter wheat rotation: weed densities, crop yield, and economics. Weed Science, 2002, 50, 504-511.	0.8	38
101	Assembly theory applied to weed communities. Weed Science, 2002, 50, 2-13.	0.8	195
102	Development of Redroot Pigweed Is Influenced by Light Spectral Quality and Quantity. Crop Science, 2002, 42, 1930-1936.	0.8	26
103	Effect of tillage, cover crop and crop rotation on the composition of weed flora in a sandy soil. Weed Research, 2002, 42, 76-87.	0.8	111
104	Effect of temperature and photoperiod on the phenological development of wild mustard (Sinapis) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
105	Understanding maize–weed competition: resource competition, light quality and the whole plant. Field Crops Research, 2001, 71, 139-150.	2.3	281
106	Light attenuation by early successional plants of the boreal forest. Canadian Journal of Forest Research, 2001, 31, 812-823.	0.8	22
107	Agriculture and ISO 14000. Food Policy, 2001, 26, 35-48.	2.8	27
108	An Integrated Weed Management Strategy for Glufosinate-Resistant Corn (Zea mays)1. Weed Technology, 2001, 15, 517-522.	0.4	28

#	Article	IF	CITATIONS
109	Effect of temperature and photoperiod on the phenological development of common lambsquarters. Weed Science, 2001, 49, 500-508.	0.8	23
110	A mechanistic growth and development model of common ragweed. Weed Science, 2001, 49, 723-731.	0.8	33
111	Photosynthesis, nitrogen-use efficiency, and water-use efficiency of jack pine seedlings in competition with four boreal forest plant species. Canadian Journal of Forest Research, 2001, 31, 2014-2025.	0.8	33
112	Tillage and cover crop impacts on aggregation of a sandy soil. Canadian Journal of Soil Science, 2000, 80, 363-366.	0.5	13
113	Farm-level profitability analysis of alternative tillage systems on clay soils. Canadian Journal of Plant Science, 2000, 80, 65-73.	0.3	11
114	Income Risk Analysis of Alternative Tillage Systems for Corn and Soybean Production on Clay Soils. Canadian Journal of Agricultural Economics, 2000, 48, 161-174.	1.2	12
115	Effects of Temperature and Photoperiod on the Phenological Development of Barnyardgrass. Agronomy Journal, 2000, 92, 1125-1134.	0.9	36
116	Influence of tillage type on vertical weed seedbank distribution in a sandy soil. Canadian Journal of Plant Science, 2000, 80, 455-457.	0.3	80
117	Effects of photoperiod on the phenological development of redroot pigweed (<i>Amaranthus) Tj ETQq1 1 0.7843</i>	14.rgBT /C	verlock 10
118	Simulation of Chenopodium albumseedling emergence. Weed Science, 2000, 48, 217-224.	0.8	107
119	An Economic Assessment of Weed Control Strategies in No-Till Glyphosate-Resistant Soybean (Glycine) Tj ETQq1	1 0.78431	43rgBT /Ove
120	Weed Control in Glufosinate-Resistant Corn (Zea mays)1. Weed Technology, 2000, 14, 578-585.	0.4	26
121	Modeling germination and shoot-radicle elongation of <i>Ambrosia artemisiifolia</i> . Weed Science, 1999, 47, 557-562.	0.8	62
122	Effect of tillage andZea maysonChenopodium albumseedling emergence and density. Weed Science, 1999, 47, 551-556.	0.8	15
123	Biologically Effective Dose and Selectivity of SAN 1269H (BAS 662H) for Weed Control in Corn (<i>Zea) Tj ETQq1</i>	1.0,78431 0.4	l4 _{rg} BT /Ove
124	Modeling germination and seedling elongation of common lambsquarters (Chenopodium album). Weed Science, 1999, 47, 149-155.	0.8	79
125	Effects of temperature and photoperiod onSetaria viridis. Weed Science, 1999, 47, 446-453.	0.8	23
126	Effect of tillage systems, N, and cover crop on the composition of weed flora. Weed Science, 1999, 47, 454-461.	0.8	113

#	Article	IF	CITATIONS
127	Influence of tillage and crop residue on postdispersal predation of weed seeds. Weed Science, 1999, 47, 184-194.	0.8	145
128	Weed seed return as influenced by the critical weed-free period in corn (Zea mays L.). Canadian Journal of Plant Science, 1999, 79, 165-167.	0.3	6
129	Alternative weed management strategies in conservation tillage systems for white beans (<i>Phaseolus vulgaris</i> L.). Canadian Journal of Plant Science, 1998, 78, 363-370.	0.3	5
130	Control of established alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.) in a no-till corn (Zea mays L.) cropping sequence. Canadian Journal of Plant Science, 1998, 78, 175-177.	0.3	8
131	Weed Management Strategies for No-Till Soybean (<i>Glycine max</i>) Grown on Clay Soils. Weed Technology, 1998, 12, 660-669.	0.4	20
132	Interference between pigweed (Amaranthusspp.), barnyardgrass(Echinochloa crus-galli), and soybean (Clycine max). Weed Science, 1998, 46, 533-539.	0.8	66
133	Residue Management and Minimum Tillage Systems for Soybean following Wheat. Agronomy Journal, 1998, 90, 131-138.	0.9	42
134	Biologically Effective Dose and Selectivity of RPA 201772 for Preemergence Weed Control in Corn (Zea) Tj ETQq	0 0 0 rgB ⁻ 0.4	[/Overlock 1)
135	Influence of temperature, photoperiod, and irradiance on the phenological development of common ragweed (<i>Ambrosia artemisiifolia</i>). Weed Science, 1998, 46, 555-560.	0.8	70
136	A mechanistic model of purple nutsedge(Cyperus rotundus)population dynamics. Weed Science, 1998, 46, 673-681.	0.8	11
137	Photothermal time describes common ragweed (<i>Ambrosia artemisiifolia</i> L.) phenological development and growth. Weed Science, 1998, 46, 561-568.	0.8	38
138	Influence of barnyardgrass (<i>Echinochloa crus-galli</i>) time of emergence and density on corn (<i>Zea mays</i>). Weed Science, 1997, 45, 276-282.	0.8	154
139	Incident photosynthetically active radiation as a basis for integrated management of purple nutsedge (Cyperus rotundus). Weed Science, 1997, 45, 777-783.	0.8	12
140	Using a mechanistic model to evaluate sampling designs for light transmission through forest plant canopies. Canadian Journal of Forest Research, 1997, 27, 117-126.	0.8	19
141	Modeling a Rye Cover Crop and Subsequent Soybean Yield. Agronomy Journal, 1997, 89, 208-218.	0.9	24
142	Modified Noâ€Till Systems for Corn Following Wheat on Clay Soils. Agronomy Journal, 1997, 89, 549-556.	0.9	36
143	Temperature- and moisture-dependent models of seed germination and shoot elongation in green and redroot pigweed (<i>Amaranthus powellii, A. retroflexus</i>). Weed Science, 1997, 45, 488-496.	0.8	34

¹⁴⁴Effect of tillage and corn on pigweed (Amaranthusspp.) seedling emergence and density. Weed Science,
1997, 45, 120-126.0.859

#	Article	IF	CITATIONS
145	Effectiveness of Soilâ€Applied Herbicides with Mechanical Weed Control for Conservation Tillage Systems in Soybean. Agronomy Journal, 1997, 89, 579-587.	0.9	25
146	Survival and dormancy of purple nutsedge (Cyperus rotundus) tubers. Weed Science, 1997, 45, 784-790.	0.8	35
147	Economic decision rules for postemergence herbicide control of barnyardgrass (<i>Echinochloa) Tj ETQq1 1 0.78</i>	4314 rgBT 0.8	Öyerlock 1
148	Recent improvements in the energy efficiency of agriculture: Case studies from Ontario, Canada. Agricultural Systems, 1996, 52, 399-418.	3.2	66
149	Simulation of Competition for Photosynthetically Active Radiation Between Common Ragweed (Ambrosia artemisiifolia) and Dry Bean (Phaseolus vulgaris). Weed Science, 1996, 44, 545-554.	0.8	19
150	Decision Rules for Postemergence Control of Pigweed (<i>Amaranthus</i> spp.) in Soybean (<i>Glycine) Tj ETQqQ</i>	0.0 rgBT	Overlock 10
151	Tillage Effects on Weed Seed Return and Seedbank Composition. Weed Science, 1996, 44, 314-322.	0.8	219
152	Weed Science Beyond the Weeds: The Role of Integrated Weed Management (IWM) in Agroecosystem Health. Weed Science, 1996, 44, 437-445.	0.8	138
153	Effect of Planting Patterns and Inter-row Cultivation on Competition Between Corn (<i>Zea mays</i>) and Late Emerging Weeds. Weed Science, 1996, 44, 865-870.	0.8	120
154	Postemergence Control of Annual Grasses and Corn (<i>Zea mays</i>) Tolerance Using DPX-79406. Weed Technology, 1996, 10, 288-294.	0.4	19
155	Integration of cover crops into no-till and ridge-till wheat (<i>Triticum aestivum</i> L.) – corn (<i>Zea mays</i> L.) cropping sequence. Canadian Journal of Plant Science, 1996, 76, 85-91.	0.3	13
156	Reducing herbicide use for weed control in soybean (Glycine max) grown in two soil types in southwestern Ontario. Canadian Journal of Plant Science, 1995, 75, 283-292.	0.3	7
157	Evaluation of three empirical models depicting Ambrosia artemisiifolia competition in white bean. Weed Research, 1995, 35, 421-428.	0.8	26
158	Influence of Common Ragweed (<i>Ambrosia artemisiifolia</i>) Time of Emergence and Density on White Bean (<i>Phaseolus vulgaris</i>). Weed Science, 1995, 43, 375-380.	0.8	117
159	Empirical Models of Pigweed (<i>Amaranthus</i> spp.) Interference in Soybean (<i>Clycine max</i>). Weed Science, 1995, 43, 612-618.	0.8	106
160	Impact of Agronomic Practices on Weed Communities: Fallow Within Tillage Systems. Weed Science, 1994, 42, 184-194.	0.8	87
161	Effect of Weed Interference and Soil Nitrogen on Four Maize Hybrids. Agronomy Journal, 1994, 86, 596-601.	0.9	100
162	Risk Efficient Choice of Bean-Winter Wheat Rotation, Cover Crop, and Tillage System on Light Textured Soils. Journal of Production Agriculture, 1994, 7, 374-380.	0.4	5

#	Article	IF	CITATIONS
163	Effect of Crop Density on Weed Interference in Maize. Agronomy Journal, 1994, 86, 591-595.	0.9	114
164	Effect of Tillage and Glyphosate on Control of Quackgrass (<i>Elytrigia repens</i>). Weed Technology, 1994, 8, 450-456.	0.4	13
165	Interference of Redroot Pigweed (<i>Amaranthus retroflexus</i>) in Corn (<i>Zea mays</i>). Weed Science, 1994, 42, 568-573.	0.8	202
166	Effect of Cover Crop Mulches on Weed Emergence, Weed Biomass, and Soybean (<i>Glycine max</i>) Development. Weed Technology, 1994, 8, 512-518.	0.4	112
167	Effect of tillage practice and planting pattern on performance of white bean (<i>Phaseolus) Tj ETQq1 1 0.784314</i>	l rgBT /Ον	erlock 10 Tfl
168	Basis for the selective action of fluroxypyr. Weed Research, 1994, 34, 333-344.	0.8	6
169	Rye cover crop management impact on soil water content, soil temperature and soybean growth. Canadian Journal of Plant Science, 1994, 74, 485-495.	0.3	34
170	Crop management systems for corn (<i>Zea mays</i> L.) following established alfalfa (<i>Medicago) Tj ETQq0 0</i>	0 rgBT /O	verlock 10 Tf
171	Response of four quackgrass (Elytrigia repens (L) Nevski) biotypes to desiccation. Canadian Journal of Plant Science, 1994, 74, 643-646.	0.3	3
172	Postemergence control of quackgrass [Elytrigia repens (L) Nevski] with DPX-79406 in corn (Zea mays L). Canadian Journal of Plant Science, 1994, 74, 375-381.	0.3	5
173	The influence of temperature and relative humidity on the efficacy of glufosinate-ammonium. Weed Research, 1993, 33, 139-147.	0.8	87
174	The influence of soil moisture, simulated rainfall and time of application on the efficacy of glufosinate-ammonium. Weed Research, 1993, 33, 149-160.	0.8	26
175	Effect of tillage on nitrogen response in corn (<i>Zea mays</i> L.) after established alfalfa (<i>Medicago sativa</i> L.). Canadian Journal of Plant Science, 1993, 73, 73-81.	0.3	12
176	Economie analysis of alternative cropping systems for a bean/wheat rotation on light-textured soils. Canadian Journal of Plant Science, 1993, 73, 405-415.	0.3	10
177	Weed Succession under Conservation Tillage: A Hierarchical Framework for Research and Management. Weed Technology, 1993, 7, 286-297.	0.4	111
178	In Vitro Selection of Imazethapyr-Tolerant Tomato (Lycopersicon esculentumMill.). Weed Science, 1993, 41, 12-17.	0.8	8
179	Impact of Agronomic Practices on Weed Communities: Tillage Systems. Weed Science, 1993, 41, 409-417.	0.8	236
180	Effect of Corn-Induced Shading and Temperature on Rate of Leaf Appearance in Redroot Pigweed (Amaranthus retroflexus L.). Weed Science, 1993, 41, 590-593.	0.8	36

#	Article	IF	CITATIONS
181	Crop Losses Due to Weeds in Canada. Weed Technology, 1993, 7, 537-542.	0.4	70
182	Field Bindweed (Convolvulus arvensis) Control with Fluroxypyr. Weed Technology, 1993, 7, 966-971.	0.4	4
183	Interaction of White Bean (<i>Phaseolus vulgaris</i> L.) Cultivars, Row Spacing, and Seeding Density with Annual Weeds. Weed Science, 1993, 41, 62-68.	0.8	102
184	Effect of Corn-Induced Shading on Dry Matter Accumulation, Distribution, and Architecture of Redroot Pigweed (<i>Amaranthus retroflexus</i>). Weed Science, 1993, 41, 568-573.	0.8	65
185	The Critical Period of Weed Control in White Bean (<i>Phaseolus vulgaris</i>). Weed Science, 1993, 41, 180-184.	0.8	66
186	The Critical Period of Weed Control in Soybean [<i>Glycine max</i> (L.) Merr.]. Weed Science, 1993, 41, 194-200.	0.8	198
187	Influence of interference from a mixed weed species stand on soybean (Glycine max (L.) Merr.) growth. Canadian Journal of Plant Science, 1993, 73, 1293-1304.	0.3	25
188	The Critical Period of Weed Control in Grain Corn (<i>Zea mays</i>). Weed Science, 1992, 40, 441-447.	0.8	347
189	The biology of Canadian weeds. 101. <i>Helianthus tuberosus</i> L Canadian Journal of Plant Science, 1992, 72, 1367-1382.	0.3	64
190	Banded Herbicide Applications and Cultivation in a Modified No-till Corn (<i>Zea mays</i>) System. Weed Technology, 1992, 6, 535-542.	0.4	37
191	Integration of Cereal Cover Crops in Ridge-tillage Corn (<i>Zea mays</i>) Production. Weed Technology, 1992, 6, 553-560.	0.4	13
192	Integrated Weed Management: The Rationale and Approach. Weed Technology, 1991, 5, 657-663.	0.4	397
193	DIFFERENTIAL RESPONSE OF SELECTED SPECIES OF BRASSICACEAE TO DPX-A7881. Canadian Journal of Plant Science, 1990, 70, 873-877.	0.3	11
194	Environmental factors affecting the herbicidal activity of DPX-A7881. Weed Research, 1990, 30, 271-278.	0.8	5
195	Postemergence Control of Weeds in Winter Rapeseed, <i>Brassica napus</i> , by DPX-A7881. Weed Science, 1990, 38, 389-395.	0.8	6
196	Control of Wild-Proso Millet (Panicum miliaceum) with Imazethapyr. Weed Technology, 1990, 4, 446-450.	0.4	5
197	Biomass and nutrient allocation patterns in Jerusalem artichoke (Helianthus tuberosus). Canadian Journal of Botany, 1989, 67, 2880-2887.	1.2	17
198	CONTROL OF WILD MUSTARD IN CANOLA WITH POSTEMERGENCE HERBICIDES. Canadian Journal of Plant Science, 1989, 69, 889-896.	0.3	19

#	Article	IF	CITATIONS
199	Selectivity of 2,4-D in Solanum ptycanthum Dun. and Lycopersicon esculentum Mill Weed Research, 1988, 28, 117-126.	0.8	4
200	Economics of Herbicide use on Corn (Zea mays) and Soybeans (Glycine max) in Ontario. Weed Technology, 1988, 2, 466-472.	0.4	7
201	CONTROL OF Teucrium canadense L. var. Canadense WITH HERBICIDES. Canadian Journal of Plant Science, 1985, 65, 163-167.	0.3	0
202	Relation of weather variables and host factors to incidence of airborne spores of Botrytis squamosa. Canadian Journal of Botany, 1978, 56, 2460-2469.	1.2	41
203	Benefit of tank-mixing dicamba with glyphosate applied post-emergence for weed control in dicamba plus glyphosate resistant soybean. Canadian Journal of Plant Science, 0, , .	0.3	2